\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{crossed product algebra} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{smash_product_algebra}{Smash product algebra}\dotfill \pageref*{smash_product_algebra} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{cocycled_crossed_product}{Cocycled crossed product}\dotfill \pageref*{cocycled_crossed_product} \linebreak \noindent\hyperlink{literature}{Literature}\dotfill \pageref*{literature} \linebreak \hypertarget{smash_product_algebra}{}\subsection*{{Smash product algebra}}\label{smash_product_algebra} \hypertarget{definition}{}\subsubsection*{{Definition}}\label{definition} Given a $k$-[[bialgebra]] $H$, and a left [[Hopf action]] $\triangleright$ of $H$ on a $k$-algebra $A$, one defines the \textbf{crossed product algebra} $A\sharp H$ (in [[Hopf algebra]] literature also called the \textbf{smash product algebra} or Hopf smash product; distinguish from the rather different [[smash product]] in topology) as the $k$-algebra whose underlying vector space is $A\otimes H$ and the product is given by \begin{displaymath} (a\otimes h)(a'\otimes h') = \sum a (h_{(1)}\triangleright a')\otimes h_{(2)}h'. \end{displaymath} The idea is that if the bialgebra $H$ is in fact a [[Hopf algebra]] embedded as $1\otimes H\subset A\sharp H$ -- whatever the product in the latter is (but assumed to satisfy $(a\otimes 1)(1\otimes h) = a\otimes h$) -- and if the action is inner within $A\sharp H$, i.e. $h\triangleright a = \sum h_{(1)} a S(h_{(2)})$, then we have \begin{displaymath} \sum (h_{(1)}\triangleright a) h_{(2)} = \sum h_{(1)} a S(h_{(2)}) h_{(3)} = \sum h_{(1)} a \epsilon(h_{(2)})= h a \,, \end{displaymath} and hence the formula for the product above is a tautology: $a h a' h' = a(h_{(1)}\triangleright a') h_{(2)} h'$. Similarly, given a right Hopf action of $H$ on $A$, one defines the crossed product algebra $H\sharp A$ whose underlying space is $H\otimes A$. The left and right versions are isomorphic if $H$ has an invertible antipode; this extends the correspondence between the left and right actions obtained by composing with the antipode map. \hypertarget{properties}{}\subsubsection*{{Properties}}\label{properties} Every smash product algebra of the form $A\sharp H$ is naturally equipped with a [[monomorphism]] $A\mapsto A\sharp 1\hookrightarrow A\sharp H$ of algebras and with a right $H$-coaction $a\otimes h\mapsto a\otimes \Delta(h)\in (A\sharp H)\otimes H$ making $A\sharp H$ into a right $H$-comodule algebra. Map $\gamma: h\mapsto 1\otimes h$, $H\hookrightarrow A\sharp H$ is then a map of right $H$-comodule algebra (where the coaction on $H$ is $\Delta$), and $A\otimes 1\subset A\sharp H$ is the subalgebra of $H$-coinvariants. If $H$ is a Hopf algebra, then the homomorphism $\gamma$ is a convolution invertible linear map with convolution inverse $\gamma^{-1}$ defined by $\gamma^{-1}(h)=\gamma(Sh)$ for $h\in H$, where $S$ is the antipode of $H$. Conversely, \textbf{Proposition} \emph{Let $H$ be a Hopf algebra, $E$ a right $H$-comodule algebra, and $\gamma:H\to E$ a map of right $H$-comodule algebra. Clearly $H$ acts on $E^{co H}$ by $h\triangleright a = \sum \gamma(h_{(1)}) a\gamma(Sh_{(2)})$ for $a\in E^{co H}$ and $h\in H$, where the product on the right-hand side is in $E$. Conclusion: $E\cong E^{co H}\sharp H$ where the smash product is with respect to that action.} \hypertarget{cocycled_crossed_product}{}\subsection*{{Cocycled crossed product}}\label{cocycled_crossed_product} There is also a more general cocycled crossed product. For a bialgebra $H$ and an algebra $U$, if we consider the category $C(U,H)$ of extensions $U\hookrightarrow E$ which are compatibly left $U$-modules and right $H$-comodules, and where $U=E^{\mathrm{co}H}$, then the crossed product algebras are the canonical representatives of [[cleft Hopf-Galois extension]]s which are a more invariant concept. Let $U$ be an algebra, $H$ a Hopf algebra, $\triangleright : H\otimes U\to U$ a [[measuring]], i.e. a $k$-linear map satisfying $h\triangleright(u v)=\sum (h_{(1)}\triangleright u)(h_{(2)}\triangleright v)$ for all $h\in H$, $u,v\in U$, and which we assume unital, i.e. $h\triangleright 1 = \epsilon(h)1$ for all $h\in H$. We do \emph{not} assume that $\triangleright$ is an action. Let further a (convolution) \emph{invertible} $k$-linear map $\sigma \in Hom_k(H\otimes H,U)$ be given. We say that $\sigma$ is a \textbf{2-cocycle} (relative to the measuring $\triangleright$) if the following two cocycle identities hold \begin{displaymath} h\triangleright (k\triangleright u) = \sum \sigma(h_{(1)},k_{(1)}) ((h_{(2)}k_{(2)})\triangleright u) \sigma^{-1}(h_{(3)},k_{(3)}) \end{displaymath} \begin{displaymath} \sum [h_{(1)}\triangleright\sigma(k_{(1)},m_{(1)})]\sigma(h_{(2)},k_{(2)}m_{(2)})=\sum \sigma(h_{(1)},k_{(1)})\sigma(h_{(2)}k_{(2)},m) \,. \end{displaymath} These identities clearly generalize the classical [[factor system]]s in group theory (linearly extended to the case of group algebras, for the finite groups at least). Therefore it is an example of a nonabelian cocycle in Hopf algebra theory. However, its role in the general theory is less well understood than the group case. Define the \textbf{cocycled crossed product} on $U\otimes H$ by \begin{displaymath} (u \sharp h)(v\sharp k) = \sum u (h_{(1)}\triangleright v) \sigma(h_{(2)},k_{(1)})\sharp h_{(3)} k_{(2)} \end{displaymath} for all $h,k\in H$, $u,v\in U$. The cocycled crossed product is an associative algebra iff $\sigma$ is a cocycle. If so, we call $U\sharp_\sigma H$ \textbf{cocycled crossed product algebra}. Map $1\otimes\Delta_H:U\sharp_\sigma H\to (U\sharp_\sigma H)\otimes H$ is a right $H$-coaction, making $U\sharp_\sigma H$ into a right $H$-comodule algebra, which is cleft extensions]] are always isomorphic (as $H$-extensions) to the cocycled crossed product algebras. If $\sigma(h,k)=\epsilon(h)\epsilon(k)1_U$ then we say that $\sigma$ is a trivial cocycle and then the compatibility conditions above reduce to demanding that the measuring $\triangleright$ is an action. The cocycled crossed product then reduces to the usual smash product algebra. \textbf{Theorem.} Suppose we are given two measurings $\triangleright,\triangleright':H\otimes U\to A$ with cocycles $\sigma, \tau$ respectively. Then there exists an isomorphism of $H$-extensions of $U$, $i: U\sharp_\sigma H\cong U\sharp_\tau H$ (i.e. an isomorphism of $k$-algebras, left $U$-modules and right $H$-comodules) iff there is an invertible element $f\in Hom_k(H,U)$ such that for all $u\in U$, $h,k\in H$ \begin{displaymath} h\triangleright' u = \sum f^{-1}(h_{(1)})(h_{(2)}\triangleright u) f(h_{(3)}), \end{displaymath} \begin{displaymath} \tau(h,k) = \sum f^{-1}(h_{(1)})[h_{(2)}\triangleright f^{-1}(k_{(1)})]\sigma(h_{(3)},k_{(2)})f(h_{(4)}k_{(3)}). \end{displaymath} The isomorphism $i$ is then given by \begin{displaymath} i(u\sharp_\sigma h) = \sum u f(h_{(1)})\sharp_\tau h_{(2)} \end{displaymath} \hypertarget{literature}{}\subsection*{{Literature}}\label{literature} Related $n$Lab entres include [[crossed product C\emph{-algebra]], [[noncommutative torsor]], [[Hopf-Galois extension]]} \begin{itemize}% \item Y. Doi, M. Takeuchi, \emph{Cleft comodule algebras for a bialgebra}, Comm. Alg. \textbf{14} (1986) 801--818 \item Y. Doi, \emph{Equivalent crossed products for a Hopf algebra}, Comm. Alg. \textbf{17} (1989), 3053--3085, \href{http://www.ams.org/mathscinet-getitem?mr=1030610}{MR91k:16027}, \href{ttp://dx.doi.org/10.1080/00927878908823895}{doi} \item S. Montgomery, \emph{Hopf algebras and their actions on rings}, CBMS Regional Conference Series in Mathematics \textbf{82}, AMS 1993. \item S. Majid, \emph{Foundations of quantum group theory}, Cambridge University Press 1995. \end{itemize} category: algebra, noncommutative geometry [[!redirects crossed product algebras]] [[!redirects Hopf smash product]] [[!redirects smash product algebra]] [[!redirects cleft extension]] [[!redirects cleft Hopf-Galois extension]] [[!redirects cleft comodule algebra]] \end{document}