\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{crossed square} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{homotopical_example}{Homotopical example}\dotfill \pageref*{homotopical_example} \linebreak \noindent\hyperlink{algebraic_example}{Algebraic example}\dotfill \pageref*{algebraic_example} \linebreak \noindent\hyperlink{simplicial_group_example}{Simplicial group example}\dotfill \pageref*{simplicial_group_example} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{relation_to_groups}{Relation to $cat^2$-groups}\dotfill \pageref*{relation_to_groups} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[crossed module]] is a bit like a [[normal subgroup]] \ldots{} without being a [[subgroup]]. In fact if a crossed module has a boundary map which is a monomorphism then it is isomorphic to the inclusion crossed module of a normal subgroup. Crossed modules model all connected [[homotopy 2-type]]s (which by the [[looping and delooping]]-theorem means: all [[2-group]]s). \emph{Crossed squares} model all connected [[homotopy 3-type]]s (hence all [[3-group]]s) and correspond in much the same way to pairs of normal subgroups. Suppose $G$ is a group and $M$ and $N$ are normal subgroups of $G$; then of course, so is $M \cap N$. Put these groups in a square, with the inclusion maps between them. Finally note that if $m \in M$ and $n \in N$, then $[m,n]$ is in the intersection $M \cap N$. This gives you a crossed square with $h$-map $h(m,n) = [m,n]$. Removing the condition that the inclusions are inclusions (!) gives the general form. (The definition that follows is that given by Guin-Valery and Loday in their paper (see references). Another definition can be given that is just the case $n = 2$ of that of [[crossed n-cube]], for which see that entry. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{crossed square} \begin{displaymath} \itexarray{& L & {\to}^\lambda & M & \\ \lambda^\prime & \downarrow &&\downarrow & \mu\\ &N & {\to}_{\nu}& P & \\ } \end{displaymath} consists of four morphisms of groups $\lambda: L \to M$, $\lambda': L \to N$, $\mu: M \to P$, $\nu: N \to P$, such that $\nu \lambda'= \mu \lambda$ together with [[action]]s of the group $P$ on $L, M, N$ on the left, conventionally, (and hence actions of $M$ on $L$ and $N$ via $\mu$ and of $N$ on $L$ and $M$ via $\mu$) and a function $h: M \times N \to L$. This structure shall satisfy the following axioms: \begin{enumerate}% \item the maps $\lambda, \lambda '$ preserve the actions of $P$; further, with the given actions, the maps $\lambda, \lambda',\mu, \nu$ and $\kappa = \mu\lambda = \mu '\lambda '$ are crossed modules; \item $\lambda h(m,n)=m^n m^{-1},\lambda 'h(m,n)= {^m}n\,n^{-1}$ \item $h(\lambda l, n)= l^n l^{-1}, h(m,\lambda 'l)= {^m}l\, l^{-1}$ \item $h(mm',n) = {^m}h(m',n) h(m,n), h(m,nn') = h(m,n) ^n h(m,n')$; \item $h(^p m, {^p n})= {^p}h(m,n)$; \end{enumerate} for all $l\in L, \,m, m'\in M,\, n,n'\in N$ and $p\in P$. The similarity of these axioms to [[commutator]] identities is no accident (see below). This should be thought of as a \emph{crossed module of crossed modules} (in either direction!). For instance horizontally: \begin{displaymath} \itexarray{& L & & M & \\ \lambda^\prime & \downarrow &\to &\downarrow & \mu\\ &N & & P & \\ } \end{displaymath} The image of this morphism is a normal sub-crossed module of $(M,P,\mu)$, so we can form a quotient \begin{displaymath} \overline{\mu} : M/\lambda L \to P/\nu N, \end{displaymath} and this is a crossed module, as is the kernal crossed module of this (horizontal) morphism. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{homotopical_example}{}\subsubsection*{{Homotopical example}}\label{homotopical_example} The classical homotopical example $\Pi(X;A,B)$ is determined by a pointed [[triad]] $(X; A,B)$ where $A,B \subseteq X$, and $P = \pi_1(A \cap B)$, $M = \pi_2(A, A \cap B), N = \pi_2(B, A \cap B)$ and $L=\pi_3(X; A,B)$. The operations of $P$ are the standard ones and $h$ is the generalised [[Whitehead product]]. (The conventions may be slightly different from the standard ones in homotopy theory.) This can be generalised to a functor $\Pi$ from squares of pointed spaces to crossed squares. Ellis uses this construction in \begin{itemize}% \item G.J. Ellis, Crossed squares and combinatorial homotopy, Math. Z., 461 (1993) 93--110, \end{itemize} where the fact that that the crossed square associated to a triad is defined directly in terms of certain homotopy classes is important. The fact that there is a [[van Kampen theorem|van Kampen type theorem]] for $\Pi$ implies that one calculates some nonabelian groups. It also implies that one is calculating some (pointed) homotopy 3-types. \hypertarget{algebraic_example}{}\subsubsection*{{Algebraic example}}\label{algebraic_example} The example hinted at above has $P$ a group, $M$ and $N$ normal subgroups, and $L = M \cap N$, \begin{displaymath} \itexarray{& M\cap N & {\to}^\lambda & M & \\ \lambda^\prime & \downarrow &&\downarrow & \mu\\ &N & {\to}_{\nu}& P & \\ } \end{displaymath} with all maps the evident inclusions, all actions by conjugation, and $h : M \times N \to M\cap N$ given by $h(m,n) = [m,n]$. \hypertarget{simplicial_group_example}{}\subsubsection*{{Simplicial group example}}\label{simplicial_group_example} If we replace each group in the algebraic example by a simplicial group, we would have a simplicial crossed square, now apply the connected component functor to that and you get a crossed square, and in fact any crossed square can be constructed up to isomorphism in this way. If we start with a simplicial group, $G$, using the [[decalage]] functor we can construct a simplicial group and two normal subgroups and thus get to the previous situation. The result can be interpreted in terms of the [[Moore complex]] as follows: \begin{displaymath} \itexarray{& \frac{NG_2}{d_0(NG_3)}& {\to} & Ker d_1 & \\ & \downarrow &&\downarrow & \\ &Ker d_2 & {\to}& G_1 & \\ } \end{displaymath} The two morphisms with codomain $G_1$ are inclusions, the other two are induced by $d_0$. The $h$-map can be explicitly given. It can be found in T. Porter, \emph{n-types of simplicial groups and crossed n-cubes}, Topology, 32, (1993), 5 -- 24, which also contains the discussion of the generalisation to [[crossed n-cube|crossed n-cubes]] \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{relation_to_groups}{}\subsubsection*{{Relation to $cat^2$-groups}}\label{relation_to_groups} A crossed module $\mu: M \to P$ determines a $cat^1$-structure on the [[semidirect product]] group $M \rtimes P$. Thus to say that the above crossed square is a \emph{crossed module of crossed modules} suggests that we should ask for $L \rtimes N \to M \rtimes P$ to be a crossed module, so that there is an action which allows the \emph{big group} $G = (L \rtimes N) \rtimes (M \rtimes P)$ to be a $cat^1$-group. Then $G$ becomes a \emph{$cat^2$-[[cat-2-group|group]]}. The $h$-map of the crossed square derives from a commutator in $G$. This equivalence between crossed squares and $cat^2$-groups confirms the completeness of the axioms for crossed squares. Notice also that to prove a diagram of crossed squares is a [[colimit]] diagram, it looks as if you have to make appallingly detailed verifications of axioms. It is much easier to prove the corresponding diagram of $cat^2$-groups is a colimit! This theme of using two equivalent categories, one for conjecture and proof, the other for calculation and application to traditional invariants, runs through the story of [[higher homotopy van Kampen theorems]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[group]] \item [[2-group]], [[crossed module]], [[differential crossed module]] \item [[3-group]], [[2-crossed module]] / \textbf{crossed square}, [[differential 2-crossed module]] \item [[∞-group]], [[simplicial group]], [[crossed complex]], [[hypercrossed complex]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item D. Guin-Walery and [[J.-L. Loday]], 1981, \emph{Obstructions \`a{} l'excision en K-th\'e{}orie alg\`e{}brique}, in Evanston Conference on Algebraic K-theory, 1980, volume 854 of Lecture Notes in Maths., 179 -- 216, Springer. \end{itemize} [[!redirects crossed squares]] \end{document}