\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cubical structure in M-theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Idea}{Idea}\dotfill \pageref*{Idea} \linebreak \noindent\hyperlink{relation_to_ftheory_and_the_topological_witten_genus}{Relation to F-theory and the topological Witten genus}\dotfill \pageref*{relation_to_ftheory_and_the_topological_witten_genus} \linebreak \noindent\hyperlink{RelationToSDualityAnd3FormFlux}{Relation to S-duality and 3-form flux}\dotfill \pageref*{RelationToSDualityAnd3FormFlux} \linebreak \hypertarget{Idea}{}\subsection*{{Idea}}\label{Idea} It is well known that when the [[higher dimensional Chern-Simons theory|higher Chern-Simons term]] in [[11-dimensional supergravity]] is [[KK-compactification|compactified]] on a 4-sphere to yield the [[7-dimensional Chern-Simons theory]] which inside \href{AdS-CFT#AdS7CFT6}{AdS7/CFT6} is dual to the [[M5-brane]] [[6d (2,0)-superconformal QFT]], the [[cup product]] square in [[ordinary differential cohomology]] that enters its definition is to receive a [[quadratic refinement]]. This was originally argued in (\href{http://ncatlab.org/nlab/show/7d+Chern-Simons+theory#Witten97}{Witten 97}) and then formalized and proven in ([[Quadratic Functions in Geometry, Topology, and M-Theory|Hopkins-Singer 02]]). What though is the situation up in 11 dimensions before compactifying to 7-dimensions? In (\href{supergravity+C-field#DFM}{DFM 03, section 9}) it is claimed that the full 11-dimensional Chern-Simons term evaluated on the [[supergravity C-field]] (with its flux quantization correction, see there) indeed carries a \emph{cubic refinement}. More precisely, and slightly paraphrasing, the [[fiber integration in ordinary differential cohomology|transgression]] $\int_X CS_{11}(\hat C)$ of the [[higher dimensional Chern-Simons theory|11-dimensional Chern-Simons term]] of [[11-dimensional supergravity|11d SuGra]] to 10d spacetime $X$ is a [[complex line bundle]] on the [[moduli space]] $CField(X)$ of [[supergravity C-field|supergravity C-fields]] $\hat C$ is claimed to be such that its ``cubical line'' $\Theta(\int_X CS_{11}(\hat C))$ (in the notation at \emph{[[cubical structure on a line bundle]]}) is the line bundle on the space of triples of C-field configurations which is given by the transgression of the three-fold [[cup product in ordinary differential cohomology]], \begin{displaymath} \Theta\left(\int_X CS_{11}\left(-\right)\right) \simeq \int_X (-)_1 \cup (-)_2 \cup (-)_3 \,. \end{displaymath} \hypertarget{relation_to_ftheory_and_the_topological_witten_genus}{}\subsection*{{Relation to F-theory and the topological Witten genus}}\label{relation_to_ftheory_and_the_topological_witten_genus} In the context of ``[[F-theory]] compactifications'' of [[M-theory]], one considers [[supergravity C-field|C-fields]] on an [[elliptic fibration]] which are ``factorizable fluxes'', in that their underlying [[cocycle]] $\hat C$ in [[ordinary differential cohomology]] is the [[cup product in ordinary differential cohomology|cup product]] of a cocycle $\hat C_{fib}$ on the fiber with one $\hat C_b$ on the base \begin{displaymath} \hat C \coloneqq \hat C_{b} \cup \hat C_{fib} \,. \end{displaymath} In approaches like (\href{http://ncatlab.org/nlab/show/F-theory#GKP12}{GKP 12 (around p. 19)}, \href{http://ncatlab.org/nlab/show/F-theory#KMW12}{KMW 12}) the [[supergravity C-field|C-field]] is factored as a [[cup product in ordinary differential cohomology|cup product]] of a degree-2 cocycle on the elliptic fiber with a degree-2 class in the [[Calabi-Yau space|Calabi-Yau]]-base. This makes the component of the C-field on the elliptic fiber a [[complex line bundle]] (with [[connection on a bundle|connection]]). Notice that the space of complex line bundles on an elliptic curve is dual to the elliptic curve itself. On the other hand in e.g. (\href{supergravity+C-field#DFM}{DFM 03, p.38}) the factorization is taken to be that of two degree-3 cocycles in the base (which are then identified with the combined degree-3 [[RR-field]]/[[B-field]] flux coupled to the [[(p,q)-string]]) with, respectively, the two canonical degree-1 cocycles $\hat t_i$ on the elliptic fiber which are given by the two canonical coordinate functions $t_i$ (speaking of a [[framed elliptic curve]]). In this case the fiber-component of the [[supergravity C-field]] ``is'' the [[elliptic curve]]-fiber, \begin{displaymath} \hat C \coloneqq \hat B_{NS} \cup \hat t_1 + \hat B_{RR} \cup \hat t_2 \end{displaymath} or equivalently each point in the moduli space of $H$-flux in 10d induces an identification of the $G$-flux with the elliptic curve this way. This is maybe noteworthy in that when the [[supergravity C-field|C-field]] is identified with the compactification [[elliptic curve]] in this way, then the formula for $\Theta\left(\int_X CS_{11}(\hat C)\right)$ as \hyperlink{Idea}{above} is exactly that appearing in the definition of a [[cubical structure on a line bundle]] over an [[elliptic curve]]. But a ``cubical'' trivialization of $\Theta(\mathcal{O}(-\{0\}))$ over a given elliptic curve is what in (\href{http://ncatlab.org/nlab/show/string+orientation+of+tmf#Hopkins02}{Hopkins 02}, \href{http://ncatlab.org/nlab/show/string+orientation+of+tmf#AndoHopkinsStrickland01}{AHS01}) is used to induce the [[sigma-orientation]] of the corresponding [[elliptic cohomology theory]] and in totality the [[string-orientation of tmf]]. But that is the refinement of the [[Witten genus]], hence of the [[partition function]] of the [[heterotic string]]. Now,by the above fact that $\Theta\left(CS_{11}(-)\right) \simeq \int_X (-)_1 \cup (-)_2 \cup (-)_3$ a cubical trivialization of $\Theta(L)$ is also given by a trivialization of the topological class of the C-field. This is one way (or is at least closely related) to the trivialization of the anomaly line bundle which ``sets the quantum integrand'' of M-theory. So there is a curious coincidence of concepts here, which might want to become a precise identification: on the one hand there is naturally a [[cubical structure on a line bundle]] on the Chern-Simons line bundle over the moduli space of [[supergravity C-fields]] which for [[F-theory]] compactifications and factorizable flux configurations induces in particular a cubical structure on a line bundle over the compactification elliptic curve. On the other hand, the latter are the structures that enter the refined construction of the [[Witten genus]] via the [[string orientation of tmf]]. \hypertarget{RelationToSDualityAnd3FormFlux}{}\subsection*{{Relation to S-duality and 3-form flux}}\label{RelationToSDualityAnd3FormFlux} The refined perspective on [[perturbative string theory|perturbative]] [[type II string theory]] is that (see also at \emph{[[orientifold]]}) the [[B-field]] is a [[cocycle]] in ([[twisted cohomology|twisted]]) [[ordinary differential cohomology]], while the [[RR-field]] is a [[cocycle]] in [[differential K-theory]] (im fact [[KR-theory]]). This is however not compatible with [[non-perturbative effect|non-perturbative]] [[S-duality]], which mixes the degree- components here. In (\href{supergravity+C-field#DFM}{DFM 03, section 9.3}) it was argued that the cubical structure on the 11d CS term alleviates this problem, even though at face value it does not really solve it. But see at \emph{\href{S-duality#CohomologicalNatureOfTypeIIFieldsUnderSDuality}{S-duality -- Cohomological nature of type II fields}} for more on this. \end{document}