\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cubical structure on a line bundle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{relation_to_orientations_in_complexoriented_cohomology_theory}{Relation to orientations in complex-oriented cohomology theory}\dotfill \pageref*{relation_to_orientations_in_complexoriented_cohomology_theory} \linebreak \noindent\hyperlink{on_the_11dimensional_chernsimons_term}{On the 11-dimensional Chern-Simons term}\dotfill \pageref*{on_the_11dimensional_chernsimons_term} \linebreak \noindent\hyperlink{related_concept}{Related concept}\dotfill \pageref*{related_concept} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{cubical structure} on a [[complex line bundle]] over an [[abelian group]] is a certain trivialization of a certain induced line bundle on the 3-fold Cartesian product (``cube'') of the group which is constructed in a kind of cubical generalization of the [[polarization identity]] formula for [[quadratic forms]]. Over [[formal groups]] associated with [[complex oriented cohomology theories]] cubical structures encode [[orientation in generalized cohomology]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} Given a [[circle group]]-[[principal bundle]]/[[complex line bundle]] $\mathcal{L}$ on an [[abelian group]] $A$, write $\Theta(\mathcal{L})$ for the line bundle on $G^3$ which is given by the formula \begin{displaymath} \Theta(\mathcal{L})_{x,y,z} = \mathcal{L}_{x+y+z} \otimes \mathcal{L}_{x+y}^{-1} \otimes \mathcal{L}_{x+z}^{-1} \otimes \mathcal{L}_{y+z}^{-1} \otimes \mathcal{L}_x \otimes \mathcal{L}_y \otimes \mathcal{L}_z \otimes \mathcal{L}_0^{-1} \,. \end{displaymath} \end{defn} \begin{defn} \label{CubicalStructure}\hypertarget{CubicalStructure}{} A \emph{cubical structure} on $\mathcal{L}$ is a trivializing [[section]] $s$ of $\Theta(\mathcal{L})$ such that \begin{enumerate}% \item $s(0,0,0) = 1$ \item $s(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}) = s(x_1, x_2, x_3)$ \item $s(w+x,y,z) s(w,x,z) = s(w,x + y, z) s(x,y,z)$ \end{enumerate} for all elements of $A$ as indicated, and for all [[permutations]] $\sigma$ of three elements. Here the equalities are equalities of section after applying the canonical [[isomorphisms]] of [[complex lines]] on both sides. \end{defn} (\hyperlink{Breen83}{Breen 83}, \hyperlink{Hopkins94}{Hopkins 94, section 4}, \hyperlink{AndoHopkinsStrickland01}{Ando-Hopkins-Strickland 01, def. 2.40}) \begin{remark} \label{}\hypertarget{}{} The canonical isomorphsms hidden in def. \ref{CubicalStructure} are: \begin{enumerate}% \item $\mathcal{L}_0^{\otimes 3} \otimes (\mathcal{L}_0^{-1})^{\otimes 3} \to 1$ the canonical map exhibiting $\mathcal{L}_0^{-1}$ as the inverse ([[dual object]]) of $\mathcal{L}_0$: \item etc. \end{enumerate} \end{remark} There is the following further refinement. \begin{defn} \label{}\hypertarget{}{} In the situation of def. \ref{CubicalStructure}, if the line bundle $\mathcal{L}$ is equipped with a natural ``symmetry'' \begin{displaymath} t \colon \mathcal{L}_x \stackrel{\simeq}{\longrightarrow} \mathcal{L}_{-x} \end{displaymath} then a \emph{$\Sigma$-structure} on $\mathcal{L}$ is a cubical structure, def. \ref{CubicalStructure}, such that in addition \begin{displaymath} s(x,y , -x-y) = 1 \,. \end{displaymath} \end{defn} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{relation_to_orientations_in_complexoriented_cohomology_theory}{}\subsubsection*{{Relation to orientations in complex-oriented cohomology theory}}\label{relation_to_orientations_in_complexoriented_cohomology_theory} For $E$ a [[multiplicative cohomology theory|multiplicative]] [[weakly periodic cohomology theory|weakly periodic]] [[complex orientable cohomology theory]] then $Spec E^0(B U\langle 6\rangle)$ is naturally equivalent to the space of cubical structures on the trivial line bundle over the [[formal group]] of $E$. In particular, [[homotopy classes]] of maps of [[E-infinity ring]] spectra $MU\langle 6\rangle \to E$ from the [[Thom spectrum]] to $E$, and hence universal $MU\langle 6\rangle$-[[orientation in generalized cohomology|orientations]] (see there) of $E$ are in natural bijection with these cubical structures. (\hyperlink{Hopkins94}{Hopkins 94, theorem 6.1, 6.2}, \hyperlink{AndoHopkinsStrickland01}{Ando-Hopkins-Strickland 01, corollary 2.50}) This way for instance the [[string orientation of tmf]] has been constructed. See there for more on this. \hypertarget{on_the_11dimensional_chernsimons_term}{}\subsubsection*{{On the 11-dimensional Chern-Simons term}}\label{on_the_11dimensional_chernsimons_term} The [[higher dimensional Chern-Simons theory|11-dimensiona Chern-Simons]] [[action functional]] in [[11-dimensional supergravity]] gives a line bundle $L$ on the space of [[supergravity C-fields]] whose $\Theta^3(L)$ is the transgression of the [[cup product in ordinary differential cohomology]] of three factors. It seems that each trivialization of the class of the [[supergravity C-field]] induces a ``cubical'' trivialization of $\Theta^3(L)$ as above, and hence a cubical structure on $L$. See at \emph{[[cubical structure in M-theory]]} for more on this. \hypertarget{related_concept}{}\subsection*{{Related concept}}\label{related_concept} \begin{itemize}% \item [[theta characteristic]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} An early reference discussing the relation with [[theta functions]] is \begin{itemize}% \item [[Lawrence Breen]], \emph{Fonctions th\^e{}ta et th\'e{}or\`e{}me du cube}, Springer Lecture Notes in Mathematics \textbf{980} (1983). (\href{http://www.ams.org/mathscinet-getitem?mr=823233}{MR0823233}). \end{itemize} In relation to [[orientation in generalized cohomology]] cubical structures have been prominently discussed in \begin{itemize}% \item [[Michael Hopkins]], \emph{Topological modular forms, the Witten genus, and the theorem of the cube}, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Z\"u{}rich, 1994) (Basel), Birkh\"a{}user, 1995, 554--565. MR 97i:11043 (\href{http://www.mathunion.org/ICM/ICM1994.1/Main/icm1994.1.0554.0565.ocr.pdf}{pdf}) \item [[Matthew Ando]], [[Michael Hopkins]], [[Neil Strickland]], \emph{Elliptic spectra, the Witten genus and the theorem of the cube}, Invent. Math. 146 (2001) 595--687 MR1869850 (\href{http://www.math.rochester.edu/people/faculty/doug/otherpapers/musix.pdf}{pdf}) \end{itemize} [[!redirects cubical structures on a line bundle]] [[!redirects cubical structures on line bundles]] [[!redirects cubical structure on a complex line bundle]] [[!redirects cubical structures on a complex line bundle]] \end{document}