\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cumulative hierarchy} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{in_zfc}{In ZFC}\dotfill \pageref*{in_zfc} \linebreak \noindent\hyperlink{in_algebraic_set_theory}{In algebraic set theory}\dotfill \pageref*{in_algebraic_set_theory} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[material set theory]], especially versions of set theory that accept the [[axiom of foundation]] that the membership relation $\in$ is an extensional (but not necessarily [[transitive relation|transitive]]) [[well-founded relation]], there is a picture of sets as forming a \emph{cumulative hierarchy}, hierarchically ordered by a rank function valued in the ordinals. The idea is that on Day 0 the empty set is born; on Day $n+1$ is born the power set of Day $n$. On limit Days all the sets born earlier are collected together into a single set which is their union. The cumulative hierarchy picture amounts to the assertion that every set belongs to some set produced by this iterative procedure. \hypertarget{in_zfc}{}\subsection*{{In ZFC}}\label{in_zfc} Suppose $V$ is a [[model]] of [[ZFC]]. Recall that in the theory ZFC, a set $x$ is defined to be \emph{transitive} if $b \in x$ implies $b \subset x$; this is the same as saying that if $a \in b \in x$ then $a \in x$. Note this doesn't mean that the relation $\in$ on the set consisting of $x$ and the elements of its transitive closure is itself [[transitive relation|transitive]]: the condition concerns only chains $a \in b \in c$ where $c = x$. However, if that relation \emph{is} transitive, then it is transitive, and extensional (by the extensionality axiom), and well-founded (by the axiom of foundation), and hence a well-order according to the argument \href{/nlab/show/well-order#wellorders_are_linear}{here}. In this case, $x$ is by definition an [[ordinal number]] (in the sense of von Neumann). Letting $On(V)$ be the class of ordinals (= ordinal numbers), one may define with the help of the replacement axiom a function \begin{displaymath} R: On(V) \to V \end{displaymath} by transfinite induction as follows: $R(0) = 0$, while \begin{itemize}% \item $R(\alpha + 1) = P(R(\alpha))$ (where $P$ denotes power set), \item $R(\beta) = \bigcup_{\alpha \lt \beta} R(\alpha)$ when $\beta$ is a limit ordinal. \end{itemize} \begin{prop} \label{}\hypertarget{}{} Each of the $R(\alpha)$ is transitive, and $\alpha \leq \beta$ implies $R(\alpha) \subseteq R(\beta)$. \end{prop} \begin{proof} First, if $X$ is a transitive set, then so is $P(X)$. For suppose $A \in P(X)$. Then $A \subseteq X$, and so if $x \in A$, we have $x \in X$ and thus $x \subset X$ since $X$ is transitive, so that $x \in P(X)$. We have thus shown $A \subset P(X)$. That each $R(\alpha)$ is transitive now follows by an easy induction. And so $R(\alpha) \subset R(\alpha + 1) = P(R(\alpha))$ since $R(\alpha) \in P(R(\alpha))$, and now $\alpha \leq \beta \Rightarrow R(\alpha) \subseteq R(\beta)$ follows by an easy induction. \end{proof} If $x \in R(\gamma)$, then there is a least $\beta$ such that $x \in R(\beta)$, and this $\beta$ must be a successor ordinal, $\beta = \alpha + 1$. We define the \emph{rank} of $x$ to be that $\alpha$. Thus \begin{itemize}% \item $\emptyset$ has rank $0$, \item $1 \coloneqq \{\emptyset\}$ has rank $1$, \item $\{1\}$ and $2 \coloneqq \{0, 1\}$ have rank $2$, \end{itemize} and so on. Each ordinal $\alpha$ has rank $\alpha$. \begin{theorem} \label{}\hypertarget{}{} For every element $x$ of $V$, there is some $\alpha \in On(V)$ such that $x \in R(\alpha)$. Thus every set $x$ appears as an element somewhere within the cumulative hierarchy \begin{displaymath} R(0) \subset R(1) \subset \ldots \subset R(\omega) \subset R(\omega + 1) \subset \ldots \subset R(\omega + \omega) \subset \ldots \end{displaymath} \end{theorem} The proof is essentially that $\bigcup_{\alpha \in On(V)} R(\alpha)$ is an $\in$-[[well-founded relation|inductive set]] of $V$, and so must be all of $V$ since $(V, \in)$ is well-founded (by the axiom of foundation). Details may be found in any reasonable text on ZFC set theory, for example \hyperlink{Kunen}{Kunen}. \begin{remark} \label{}\hypertarget{}{} The notation $V$ so widely seen in set theory texts and articles is a kind of visual pun that refers to the cumulative hierarchy: one imagines the V as outlining an angle, with a horizontal cross-section of the space inside the angle at height $\alpha$ suggesting a set $R(\alpha)$, which expands as $\alpha$ increases; the ordinals $\alpha$ themselves may be pictured as vertebrae of a spine or line therein. All sets in the cumulative hierarchy lie somewhere within the V. \end{remark} \hypertarget{in_algebraic_set_theory}{}\subsection*{{In algebraic set theory}}\label{in_algebraic_set_theory} The idea of the cumulative hierarchy is realized in [[algebraic set theory]] via the construction of an initial ``ZF-algebra''. In broad-brush terms, there is a general connection between well-foundedness and initial algebras, as in Paul Taylor's theory of recursion where an initial $T$-algebra (for a [[taut functor]] $T$) is seen as a [[well-founded coalgebra]] $(X, \theta: X \to T X)$ for which $\theta$ is an isomorphism (i.e., a maximal well-founded coalgebra). Algebraic set theory can be seen as exploiting this connection and working out the details in cases specific to operations on ``small sets'', eventually enabling one to get at the cumulative hierarchy \emph{per se}, i.e., the universe of \emph{well-founded sets} (as well as the universe of ordinals, etc.). This deserves to be discussed at length, but let us try to give a few hints for now. One starts with a [[pretopos]] $\mathcal{C}$ (whose objects are regarded as ``classes'') equipped with a suitable notion of ``smallness'': to say a map $f: E \to X$ in the pretopos is ``small'' means intuitively that all its [[fibers]] are ``small'' (i.e., sets). Thus one assumes some reasonable axioms on the class of small maps in $\mathcal{C}$, including the existence of a universal small map ``$el$'': $E \to U$, with the elements $u$ of $U$ naming small sets and the fiber over $u$ the actual (small) set of its elements. The smallness axioms allow one to construct a small-[[power set]] functor $P_s: \mathcal{C} \to \mathcal{C}$; intuitively this sends a class $C$ to the class of small subsets of $C$. This carries a [[monad]] structure whose algebras $(X, \sup: P_s X \to X)$ are ``small-complete'' posets in $\mathcal{C}$. To get at the actual cumulative hierarchy (with attendant global membership relation $\in$), one defines a \emph{ZF-algebra} to be a small-complete poset $(V, \leq)$ in $\mathcal{C}$, equipped with a function $s: V \to V$ satisfying suitable conditions; here one is to think of $\leq$ as ``inclusion'' and $s(x)$ as a singleton $\{x\}$. The relation $x \in y$ can then be interpreted as $s(x) \leq y$. The initial object in the category of ZF-algebras then captures the desired universe of well-founded sets. \begin{remark} \label{}\hypertarget{}{} The details of the construction of the initial ZF-algebra should be examined with attention to connections with Taylor's theory of well-founded coalgebras; for example, systematic use is made of bisimulations which has a general meaning in coalgebra theory. \end{remark} This program, initiated by [[André Joyal]] and [[Ieke Moerdijk]], permits a fine-grained analysis of \emph{intuitionistic} ZF-set theory and intuitionistic ordinals. The reader is referred to their \hyperlink{JM}{monograph} for details, and to the \href{http://www.phil.cmu.edu/projects/ast/}{Algebraic Set Theory} page for further pointers to the literature. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[constructible universe]] \item [[reflection principle]] \item [[algebraic set theory]] \item [[set-theoretic multiverse]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The cumulative hierarchy made its first appearance in \begin{itemize}% \item D. Mirimanoff, \emph{Les antinomies de Russell et de Burali-Forti et le probl\`e{}me fondamental de la th\'e{}orie des ensembles} , L'enseignement Math\'e{}matique \textbf{19} (1917) pp.37-52. (\href{http://retro.seals.ch/cntmng?pid=ensmat-001:1917:19::9}{pdf}; 19,4MB) \end{itemize} Another historically important contribution is \begin{itemize}% \item Dana Scott, \emph{Axiomatizing Set Theory} , pp.207-214 in \emph{Axiomatic Set Theory} - Proc. Symp. Pure Math. \textbf{13}, AMS Providence 1974. \end{itemize} A modern textbook account can be found e.g. in \begin{itemize}% \item Kenneth Kunen, \emph{Set Theory: An Introduction to Independence Proofs}, Studies in Logic and the Foundations of Mathematics Vol. 102 (2006), Elsevier. \end{itemize} For algebraic set theory consult the following monograph \begin{itemize}% \item Andr\'e{} Joyal and Ieke Moerdijk, \emph{Algebraic Set Theory}, London Math. Soc. Lecture Series Notes 220 (1995), Cambridge University Press. \end{itemize} \end{document}