\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{curl} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{riemannian_geometry}{}\paragraph*{{Riemannian geometry}}\label{riemannian_geometry} [[!include Riemannian geometry - contents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{Definition}{Definitions}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{InTermsOfDifferentialForms}{In terms of differential forms}\dotfill \pageref*{InTermsOfDifferentialForms} \linebreak \noindent\hyperlink{ViaIntegration}{Via integration}\dotfill \pageref*{ViaIntegration} \linebreak \noindent\hyperlink{via_cross_products}{Via cross products}\dotfill \pageref*{via_cross_products} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{Stokes}{Relation to the Stokes theorems}\dotfill \pageref*{Stokes} \linebreak \noindent\hyperlink{remark}{Remark}\dotfill \pageref*{remark} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{Definition}{}\subsection*{{Definitions}}\label{Definition} \hypertarget{InTermsOfDifferentialForms}{}\subsubsection*{{In terms of differential forms}}\label{InTermsOfDifferentialForms} In [[Riemannian geometry]], the \textbf{curl} or \textbf{rotation} of a [[vector field]] $v$ on an [[orientation|oriented]] $3$-[[dimension|dimensional]] [[Riemannian manifold]] $(X,g)$ is the vector field denoted $curl(v)$ (or $rot(v)$ or $\Del \times v$) defined by \begin{displaymath} curl(v) \;\coloneqq\; g^{-1} \left(\star_g d_{dR}\, g(v) \right) \,. \end{displaymath} where \begin{enumerate}% \item $\Gamma(T X) \underoverset{\underset{g}{\longrightarrow}}{\overset{g^{-1}}{\longleftarrow}}{\phantom{AA}\simeq\phantom{AA}} \Omega^1(X)$ is the [[linear isomorphism]] between [[vector fields]] and [[differential 1-forms]] given by the [[metric tensor]] $g$; \item $d_{dR} \;\colon\; \Omega^n(X) \longrightarrow \Omega^{n+1}(X)$ is the [[de Rham differential]] \item $\star_g \;\colon\; \Omega^n(X) \to \Omega^{dim(X)-n}(X)$ is the [[Hodge star operator]] (which uses the orientation of $X$). \end{enumerate} Notice that for this to make sense it is crucial that the [[dimension]] of $X$ is $3$, for only then is the Hodge dual of the de Rham differential of a $1$-form again a $1$-form; that is, $n = 3$ is the unique solution of $n - (1 + 1) = 1$. \hypertarget{ViaIntegration}{}\subsubsection*{{Via integration}}\label{ViaIntegration} Alternatively, the curl/rotation of a vector field $\vec v$ at some point $x\in X$ may be defined as the [[limit of a sequence|limit]] [[integral]] formula \begin{displaymath} \vec{n}\cdot rot \vec v = \lim_{area S\to 0} \frac{1}{area S} \oint_{\partial S} \vec{t}\cdot \vec v d r \end{displaymath} where $D$ runs over the smooth oriented [[surfaces]] ([[submanifolds]] of [[dimension]] $2$) containing the point $x$ and with smooth [[boundary]] $\partial D$, $\vec{n}$ is the unit vector through the surface $S$, and $\vec{t}$ is the unit vector tangent to the [[curve]] $\partial S$. (We use the orientation of $X$ to determine the [[direction of a vector|direction]] of $\vec{n}$ from the [[orientation]] of $S$.) This formula does not depend on the shape of boundaries taken in limiting process, so one can typically take a [[coordinate chart]] and [[discs]] with decreasing radius in this particular coordinate chart. One can even use $\pi r^2$ in place of the actual area of the disc around $x$ with coordinate-radius $r$, to save on calculating this area, as long as the coordinate chart assigns the standard coordinates to the metric at $x$. The proof that this definition is coherent and agrees with the previous one is essentially the [[Kelvin–Stokes Theorem]]; see \hyperlink{Stokes}{below} for discussion. \hypertarget{via_cross_products}{}\subsubsection*{{Via cross products}}\label{via_cross_products} More generally, if $(X,g)$ is a [[Riemannian manifold]] whose [[cotangent spaces]] (equivalently, [[tangent spaces]]) are smoothly equipped with a binary [[cross product]] $⨉\colon \Omega^2(X;\mathbb{R}) \to \Omega^1(X;\mathbb{R})$, then the \textbf{curl} of any vector field $v$ is \begin{displaymath} curl(c) \;=\; g^{-1} ⨉ d_{dR} g(v) \end{displaymath} However, this is not as general as it may appear: \begin{itemize}% \item in $0$ or $1$ [[dimension]], the cross product, hence the curl, must always be $0$; \item in $3$ dimensions, a smooth choice of cross product is equivalent to a smooth choice of [[orientation]], and we recover the previous formula; \item in $7$ dimensions, if a smooth choice of cross product is possible (as on the [[7-sphere]]), then uncountably many are possible, giving as many different notions of curl; \item in any other number of dimensions, no binary cross product exists at all, hence no curl. \end{itemize} That said, there are also cross products of other [[arities|arity]] in other dimensions; using essentially the same formula, we can take the curl of a $k$-[[multivector field]] if we have a smooth $(k+1)$-ary cross product. Or if the cross product is other than vector-valued, then we can obtain a curl that is other than a vector field. In particular, in $2$ dimensions, we have the \textbf{scalar curl} \begin{displaymath} curl(c) \;=\; ⨉ d_{dR} g(v) \end{displaymath} where $⨉\colon \Omega^2(X;\mathbb{R}) \to \Omega^0(X;\mathbb{R})$ is the [[volume form]] (or area form) on the $2$-dimensional Riemannian manifold $X$. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} If $(X,g)$ is $\mathbb{R}^3$ endowed with the canonical Euclidean metric, then the curl of a vector field $(v^1,v^2,v^3) = v^1\partial_1 + v^2\partial_2 + v^3\partial_3$ is \begin{displaymath} curl(v)^1 = \frac{\partial v^3}{\partial x^2}-\frac{\partial v^2}{\partial x^3} ;\qquad curl(v)^2 = \frac{\partial v^1}{\partial x^3}-\frac{\partial v^3}{\partial x^1} ;\qquad curl(v)^3 = \frac{\partial v^2}{\partial x^1}-\frac{\partial v^1}{\partial x^2} . \end{displaymath} This is the classical curl from [[vector analysis]]. If $(X,g)$ is $\mathbb{R}^2$ endowed with the canonical Euclidean metric, then the curl of a vector field $(v^1,v^2) = v^1\partial_1 + v^2\partial_2$ is \begin{displaymath} curl(v) = \frac{\partial v^2}{\partial x^1}-\frac{\partial v^1}{\partial x^2} . \end{displaymath} \hypertarget{Stokes}{}\subsection*{{Relation to the Stokes theorems}}\label{Stokes} Recall that if $X$ is an $n$-dimensional [[differentiable manifold]], $D$ is a $p$-dimensional [[submanifold]] [[manifold with boundary|with boundary]], and $\alpha$ is a [[differentiable function|differentiable]] $(p-1)$-rank [[exterior differential form]] on a [[neighbourhood]] of $D$ in $X$, then the generalized [[Stokes Theorem]] says that the [[integration of differential forms|integral]] of $\alpha$ on the boundary $\partial{D}$ equals the integral on $S$ of the [[de Rham differential]] $\mathrm{d}_{DR}\alpha$. When $n=3$, $p=2$, and $X$ is equipped with an orientation and a metric, then this is equivalent to saying that the integral of a vector field $v$ along the boundary of an oriented surface $D$ in $X$ is equal to the integral of the vector field's curl across the surface: \begin{equation} \int_{\partial{D}} v \cdot \mathrm{d}\mathbf{r} = \int_D curl v \cdot \mathrm{d}\mathbf{S} . \label{KS}\end{equation} (In particular, when $X$ is $\mathbb{R}^3$ with its standard orientation and metric, then this is equivalent to the classical Kelvin--Stokes Theorem.) At least, this is what it says if the curl is defined \hyperlink{InTermsOfDifferentialForms}{in terms of differential forms}; if the curl is defined \hyperlink{ViaIntegration}{via integration} instead, then \eqref{KS} is immediate, and the Kelvin--Stokes Theorem says that this definition matches the other one. When $n=2$, $p=2$, and $X$ is equipped with an orientation and a metric, then the Stokes Theorem is equivalent to saying that the integral of a vector field $v$ along a [[simple closed curve]] in $X$ is equal to the integral of the vector field's scalar curl on the region $D$ enclosed by the curve: \begin{equation} \int_{\partial{D}} v \cdot \mathrm{d}\mathbf{r} = \int_D curl v \mathrm{d}A . \label{Green}\end{equation} (In particular, when $X$ is $\mathbb{R}^2$ with its standard orientation and metric, then this is equivalent to the curl-circulation form of [[Green's Theorem]].) \hypertarget{remark}{}\subsection*{{Remark}}\label{remark} In many classical applications of the curl in [[vector analysis]], the Riemannian structure is actually irrelevant, and the gradient can be replaced with the [[exterior differential|deRham differential]] $d_{dR}$. That is, $X$ is treated as the $1$-form $g(X)$, its curl is treated as the $2$-form $d_{dR} g(X)$, and once these identifications are made there is no need to involve $g$ or $X$ directly at all. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[nabla]] \item [[gradient]] \begin{itemize}% \item [[gradient flow]] \item [[symplectic gradient]] \end{itemize} \item [[Hamiltonian flow]] \item \textbf{curl} \item [[divergence]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Curl_%28mathematics%29}{Curl}} \end{itemize} [[!redirects curl]] [[!redirects curls]] [[!redirects curl of a vector field]] [[!redirects curls of vector fields]] [[!redirects rotation of a vector field]] [[!redirects rotations of vector fields]] \end{document}