\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cycle category} \hypertarget{the_cycle_category}{}\section*{{The cycle category}}\label{the_cycle_category} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{structure}{Structure of the cycle category}\dotfill \pageref*{structure} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{generalized_reedy_model_structure}{Generalized Reedy model structure}\dotfill \pageref*{generalized_reedy_model_structure} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} [[Alain Connes]]'s \textbf{cycle category} $\Lambda$ (sometimes denoted $\mathcal{C}$), often called his \textbf{cyclic category} or \textbf{category of cycles}, is a small category whose [[presheaves]] -- called \emph{[[cyclic sets]]} or more generally \emph{[[cyclic objects]]} -- are somewhere intermediate between [[simplicial sets]] and [[symmetric sets]]. It strictly contains the [[simplex category]], and has [[cyclic groups]] for automorphism groups. Among its virtues, it is a self-dual category. The cycle category is used for the description of the cyclic structure on [[Hochschild homology]]/[[Hochschild cohomology]] and accordingly for the description of [[cyclic homology]]/[[cyclic cohomology]]. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Multiple descriptions of the cycle category $\Lambda$ are possible, but a convenient starting point is to consider first a category $L$ whose objects are natural numbers $n \geq 0$, and where the hom-set $L(m, n)$ consists of increasing functions $f: \mathbb{Z} \to \mathbb{Z}$ satisfying the ``spiraling property'', that $f(i + m + 1) = f(i) + n + 1$, with composition given by functional composition. Then, define $\Lambda$ to be a quotient category of $L$ having the same objects, with $\Lambda(m, n) = L(m, n)/\sim$ where $\sim$ is the equivalence relation for which $f \sim g$ means $f - g$ is a constant multiple of $n+1$. Let $q: L \to \Lambda$ be the quotient. \begin{remark} \label{simplex}\hypertarget{simplex}{} Notice that $f \in L(m, n)$ is completely determined by the values $f(0), \ldots, f(m)$. There is a faithful embedding $i: \Delta \to L$ which on objects is the identity, where $f \in L(m, n)$ belongs to the image of $i$ iff $0 \leq f(0)$ and $f(m) \leq n$. The composite \begin{displaymath} \Delta \stackrel{i}{\hookrightarrow} L \stackrel{q}{\to} \Lambda \end{displaymath} is again faithful, so that the simplex category sits inside $\Lambda$. \end{remark} \begin{remark} \label{}\hypertarget{}{} Of course the successor function $\tau: \mathbb{Z} \to \mathbb{Z}$ gives a function $\tau_n \in L(n, n)$ defined by $\tau_n(i) = i+1$, which in turn induces a function $q(\tau) \in \Lambda(n, n)$ such that $q(\tau)^{n+1} = 1_n$. In this way, we have inclusions $\mathbb{Z}/(n+1) \hookrightarrow \Lambda(n, n)$ of cyclic groups inside $\Lambda$. \end{remark} \textbf{[[cyclic object|Cyclic objects]]} in a category $C$ are the contravariant functors $\Lambda^{\mathrm{op}}\to C$, [[cocyclic objects]] are the covariant functors $\Lambda\to C$. Note that $\Lambda$ itself is, via its inclusion into $Cat$, an example of a cocyclic object in $Cat$. (Thus, the common term ``the cyclic category'' to refer to $\Lambda$ is misleading, just like using ``the [[simplicial category]]'' to refer to the [[simplex category]] $\Delta$.) If $A$ is an [[abelian category]] then the category of $A$-presheaves on $\Lambda$ is usually called (Connes's) category of \textbf{cyclic modules} in $A$. \hypertarget{structure}{}\subsection*{{Structure of the cycle category}}\label{structure} To analyze the structure of $\Lambda$ further, we make a series of easy observations. These are largely based on \hyperlink{Elm}{Elmendorf 93}. \begin{prop} \label{}\hypertarget{}{} Every morphism $f$ of $L$, regarded as a functor $\mathbb{Z} \to \mathbb{Z}$, has a left adjoint $f^\ast: \mathbb{Z} \to \mathbb{Z}$ that is also a morphism of $L$. Similarly, every morphism $f$ of $L$ has a right adjoint $f_\ast$ belonging to $L$. \end{prop} \begin{proof} By the spiraling property of $f$, for any $j \in \mathbb{Z}$ the comma category $(j \downarrow f)$ as a subset of $\mathbb{Z}$ has a lower bound in $\mathbb{Z}$ and hence is well-ordered. It is also nonempty, and we define $f^\ast(j)$ to be the least element of $(j \downarrow f)$. In other words $f^\ast(j)$ is the least $i$ such that $j \leq f(i)$. It is easy to check that $f^\ast$ obeys the spiraling property $f^\ast(j+n+1) = f^\ast(j)+m+1$, since \begin{displaymath} \itexarray{ f^\ast(j+n+1) \leq f^\ast(j)+m+1 & iff & j+n+1 \leq f(f^\ast(j)+m+1) \\ & iff & j+n+1 \leq f(f^\ast(j))+n+1 \\ & iff & j \leq f(f^\ast(j)) \\ & iff & f^\ast(j) \leq f^\ast(j) } \end{displaymath} and \begin{displaymath} \itexarray{ f^\ast(j)+m+1 \leq f^\ast(j+n+1) & iff & f^\ast(j) \leq f^\ast(j+n+1)-m-1 \\ & iff & j \leq f(f^\ast(j+n+1)-m-1) \\ & iff & j \leq f(f^\ast(j+n+1))-n-1 \\ & iff & j + n + 1\leq f(f^\ast(j) + n + 1) \\ & iff & f^\ast(j+n+1) \leq f^\ast(j+n+1). } \end{displaymath} Also, since $(\mathbb{Z}, \leq)$ as a category is self-dual, every morphism $f$ of $L$ dually has a right adjoint that is a morphism of $L$. \end{proof} \begin{cor} \label{}\hypertarget{}{} $L$ is a self-dual category. \end{cor} \begin{proof} The duality functor $L^{op} \to L$ is the identity on objects and takes $f: m \to n$ to $f^\ast: n \to m$. It is contravariant since the left adjoint of a composite $f g$ is $g^\ast f^\ast = (f g)^\ast$. It is an equivalence because its inverse is the right-adjoint mapping, $f \mapsto f_\ast$. \end{proof} \begin{prop} \label{}\hypertarget{}{} $\Lambda$ is a self-dual category. \end{prop} \begin{proof} If $f \sim g$ in $L(m, n)$, then $f = \tau^{k (n+1)} \circ g$ for some $k \in \mathbb{Z}$. Observe that $\tau^\ast = \tau^{-1}$, so $f^\ast = g^\ast \circ \tau^{-k(n+1)} = \tau^{-k(m+1)} \circ g^\ast$ where the last equation holds because $g^\ast: n \to m$ is spiraling. This shows $f^\ast \sim g^\ast$, i.e., the self-duality of $L$ descends to $\Lambda$. \end{proof} \begin{prop} \label{}\hypertarget{}{} For a morphism $f \in L(m, n)$, we have $f^\ast(0) \leq 0$ iff $0 \leq f(0)$, and $0 \leq f^\ast(0)$ iff $f(m) \leq f(n)$. Hence $f^\ast(0) = 0$ iff ($0 \leq f(0)$ and $f(m) \leq n$). \end{prop} \begin{proof} The first assertion is immediate from the adjunction $f^\ast \dashv f$. The second follows from the deduction \begin{displaymath} \itexarray{ 0 \leq f^\ast(0) & iff & -1 \lt f^\ast(0) \\ & iff & \neg (f^\ast(0) \leq -1) \\ & iff & \neg (0 \leq f(-1)) \\ & iff & f(-1) \lt 0 \\ & iff & f(m) \lt n+1 \\ & iff & f(m) \leq n } \end{displaymath} where the step to the penultimate line used the spiraling property. \end{proof} The previous proposition, in conjunction with the self-duality of $L$ and Remark \ref{simplex}, shows that $\Delta^{op}$ faithfully maps to $L$ by $\Delta^{op}(m, n) \cong \{f \in L(m, n): f(0) = 0\}$. Passing to the quotient $q: L \to \Lambda$, this description also realizes $\Delta^{op}$ as sitting inside $\Lambda$, and the next result is immediate. \begin{prop} \label{unique1}\hypertarget{unique1}{} Every morphism $f: m \to n$ in $\Lambda$ may be uniquely decomposed as $f = \tau_n^{f(0)} g$ where $g$ belongs to $\Delta^{op}(m, n) \subset L(m, n)$, and the exponent $f(0)$ is considered modulo $n+1$. \end{prop} \begin{prop} \label{action}\hypertarget{action}{} The cyclic group $\mathbb{Z}/(m+1)$ acts on $\Delta^{op}(m, n)$ via the following formula for $f \in L(m, n), f(0) = 0$: \begin{displaymath} k \cdot f = \tau^{-f(k)} \circ f \circ \tau^k \end{displaymath} or in other words, via $(k \cdot f)(i) \coloneqq f(k+i) - f(k)$. \end{prop} \begin{proof} Clearly $k \cdot f \in \{g \in L(m, n): g(0) = 0\}$. We calculate \begin{displaymath} \itexarray{ j \cdot (k \cdot f) & = & \tau^{-(k \cdot f)(j)} \circ (k \cdot f) \circ \tau^j \\ & = & \tau^{-(f(j+k) - f(k))} \circ \tau^{-f(k)} \circ f \circ \tau^k \circ \tau^j \\ & = & \tau^{-f(j+k)} \circ f \circ \tau^{j+k} \\ & = & (j + k) \cdot f. } \end{displaymath} Moreover, $((m+1)\cdot f)(i) = f(i+m+1)-f(0+m+1) = f(i)+n+1 - (f(0)+n+1) = f(i) - f(0) = f(i)$, so that the $\mathbb{Z}$-action $(k, f) \mapsto k \cdot f$ factors through a $\mathbb{Z}/(m+1)$-action. \end{proof} \begin{prop} \label{}\hypertarget{}{} Every morphism $f: m \to n$ in $\Lambda$ may be uniquely decomposed as $f = h \tau_m^{-k}$ where $h$ belongs to $\Delta$ and $k$ is unique modulo $m+1$. The cyclic group $\mathbb{Z}/(n+1)$ acts on $\Delta(m, n) \cong \{f \in L(m, n): 0 \f(0)\; and\; f(m) \leq n$ by the formula $k \cdot f = \tau^{-k} \circ f \circ \tau^{f^\ast(k)}$. \end{prop} \begin{proof} This follows from previous propositions by dualizing. For $f \in L(m, n)$ we write $f^\ast: n \to m$ uniquely in the form $\tau_m^k g$ with $g \in \Delta^{op}(n, m)$, by Proposition \ref{unique1}. Taking right adjoints, $f = g_\ast \tau_m^{-k}$ where $g_\ast \in \Delta(m, n)$. We define the action on $\Delta(m, n)$ by conjugating the action on $\Delta^{op}(n, m)$ provided by Proposition \ref{action}, i.e., for $f \in \Delta(m, n)$ we define \begin{displaymath} k \cdot f = (k \cdot f^\ast)_\ast = [\tau^{-f^\ast(k)} \circ f^\ast \circ \tau^k]_\ast = (\tau^k)_\ast \circ f^\ast_\ast \circ (\tau^{-f^\ast(k)})_\ast = \tau^{-k} \circ f \circ \tau^{f^\ast(k)} \end{displaymath} and this conjugation preserves the action axioms. \end{proof} Denoting the generator $q(\tau_n)$ of $\Aut_\Lambda([n])$ also by $\tau_n$, we saw $\tau_n^{n+1} = \mathrm{id}_{[n]}$. One may read off from the development above a (perhaps more standard, and equivalent) presentation of $\Lambda$ by [[presentation of a category by generators and relations|generators and relations]]. In addition to the cosimplicial identities between the coboundaries $\delta_i$ and codegeneracies $\sigma_j$ and $\tau^{n+1}_n = \mathrm{id}$ there are the following identities: \begin{displaymath} \itexarray{ \tau_n\delta_i = \delta_{i-1}\tau_{n-1},\,\, 1\leq i \leq n\\ \tau_n\delta_0 = \delta_n\\ \tau_n\sigma_i = \sigma_{i-1}\tau_{n-1},\,\, 1\leq i \leq n\\ \tau_m\sigma_0 = \sigma_n\tau_{n+1}^2 } \end{displaymath} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} We reiterate the development in the \hyperlink{structure}{section on structure} in summary form: \begin{theorem} \label{}\hypertarget{}{} \begin{enumerate}% \item $\Aut_\Lambda([n]) = \mathbf{Z}/(n+1)\mathbf{Z}$ \item $\Lambda([n],[m]) = \Delta([n],[m])\times \mathbf{Z}/(n+1)\mathbf{Z}$ (as a set) \item Any morphism $f$ in $\Lambda([n],[m])$ can be uniquely written as a composition $f = \phi\circ g$ where $\phi\in\Delta([n],[m])$ and $g\in\Aut_\Lambda([n])$. \end{enumerate} \end{theorem} The generalizations of this theorem are the starting point of the theory of [[skew-simplicial set]]s of Krasausukas or equivalently crossed simplicial groups of Loday and Fiedorowicz. The cyclic category is a [[generalized Reedy category]], as explained \href{http://arxiv.org/abs/0809.3341}{here}. \hypertarget{generalized_reedy_model_structure}{}\subsubsection*{{Generalized Reedy model structure}}\label{generalized_reedy_model_structure} The cycle category is a [[generalized Reedy category]]. Hence ``cyclic spaces'' carry a [[generalized Reedy model structure]]. \hypertarget{references}{}\subsection*{{References}}\label{references} Blog \href{http://golem.ph.utexas.edu/category/2007/06/the_curious_incident_of_the_do.html}{discussion} Literature: \begin{itemize}% \item [[J.-L. Loday]], \emph{Cyclic homology}, Grundleheren Math.Wiss. 301, Springer 2nd ed. \item [[V. Drinfeld]], \emph{On the notion of geometric realization}, \href{http://front.math.ucdavis.edu/0304.5064}{arXiv:math.CT/0304064} \item [[Alain Connes]], \emph{Noncommutative geometry}, Academic Press 1994 (also at \href{http://www.alainconnes.org}{http\char58\char47\char47www\char46alainconnes\char46org}) \item R. Krasauskas, \emph{Skew-simplicial groups}, (Russian) Litovsk. Mat. Sb. \textbf{27} (1987), no. 1, 89--99, \href{http://www.ams.org/mathscinet-getitem?mr=88m:18022}{MR88m:18022} (English transl. [[krasauskas.pdf:file]]) \item [[William Dwyer]], [[Daniel Kan]], \emph{Normalizing the cyclic modules of Connes}, Comment. Math. Helv. 60 (1985), no. 4, 582--600. \item [[William Dwyer]], [[Mike Hopkins]], [[Daniel Kan]], \emph{The homotopy theory of cyclic sets}, Trans. Amer. Math. Soc. 291 (1985), no. 1, 281--289. \item Z. Fiedorowicz, [[Jean-Louis Loday]], \emph{Crossed simplicial groups and their associated homology}, Trans. Amer. Math. Soc. \textbf{326} (1991), no. 1, 57--87, \href{http://www.ams.org/mathscinet-getitem?mr=91j:18018}{MR91j:18018}, \href{http://dx.doi.org/10.2307/2001855}{doi} \item [[Anthony Elmendorf]], \emph{A simple formula for cyclic duality}, Proc. Amer. Math. Soc. Volume 118, Number 3 (July 1993), 709-711. (\href{http://www.ams.org/journals/proc/1993-118-03/S0002-9939-1993-1143017-0/S0002-9939-1993-1143017-0.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Cyclic_category}{Cyclic category}} \end{itemize} [[!redirects cyclic category]] [[!redirects Connes' cyclic category]] [[!redirects category of cycles]] category: category \end{document}