\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cyclic group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{cyclic_groups}{}\section*{{Cyclic groups}}\label{cyclic_groups} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{notation}{Notation}\dotfill \pageref*{notation} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Ring}{Ring structure}\dotfill \pageref*{Ring} \linebreak \noindent\hyperlink{FundamentalTheoremOfCyclicGroups}{Fundamental theorem of cyclic groups}\dotfill \pageref*{FundamentalTheoremOfCyclicGroups} \linebreak \noindent\hyperlink{relation_to_finite_abelian_groups}{Relation to finite abelian groups}\dotfill \pageref*{relation_to_finite_abelian_groups} \linebreak \noindent\hyperlink{group_cohomology}{Group cohomology}\dotfill \pageref*{group_cohomology} \linebreak \noindent\hyperlink{linear_representations}{Linear representations}\dotfill \pageref*{linear_representations} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{cyclic group} is a [[quotient group]] of the [[free group]] on the [[singleton]]. Generally, we consider a cyclic group as a [[group]], that is without specifying which element comprises the generating singleton. But see \hyperlink{Ring}{Ring structure} below. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} There is (up to [[isomorphism]]) one cyclic group for every [[natural number]] $n$, denoted \begin{displaymath} \mathbb{Z}_n \coloneqq \mathbb{Z}/n\mathbb{Z} \,. \end{displaymath} For $n \gt 0$, the [[order of a group|order]] ([[cardinality]]) of $\mathbb{Z}_n$ is $n$ (so [[finite set|finite]]); for $n = 0$, which is the group of [[integers]] \begin{displaymath} \mathbb{Z}_0 \coloneqq \mathbb{Z} \end{displaymath} the [[order of a group|order]] is [[countable set|countable]] but [[infinite set|infinite]]. If we identify the [[free group]] on the singleton with the additive group $\mathbb{Z}$ of [[integers]], then the infinite cyclic group is $\mathbb{Z}$ itself, while the finite cyclic group of order $n$ is $\mathbb{Z}/n$, that is $\mathbb{Z}$ modulo (the [[normal subgroup]] generated by) the integer $n$. Of course, $\mathbb{Z}$ itself is also $\mathbb{Z}/0$. One could also consider $\mathbb{Z}/n$ for negative $n$, but this is the same as $\mathbb{Z}/{|n|}$. The cyclic group of order $n$ may also be identified with a [[subgroup]] of the multiplicative group of [[complex numbers]] (or [[algebraic numbers]]): the group of $n$th roots of $1$. For $n = 0$, we may pick any non-zero complex number (or even something else) that is \emph{not} a root of $1$ (but there is no standard choice) and take the subgroup generated by it. Dedicated entries exist for: \begin{itemize}% \item [[cyclic group of order 2]] \item [[cyclic group of order 3]] \item [[cyclic group of order 4]] \end{itemize} \hypertarget{notation}{}\subsection*{{Notation}}\label{notation} Besides `$\mathbb{Z}/n$', the cyclic group of order $n$ may also be denoted in other ways: some more complicated variation of `$\mathbb{Z}/n$' (to put `the [normal] subgroup generated by' explicitly in the notation), or else the simplified form `$\mathbb{Z}_n$' (which however conflicts with notation for the $n$-[[adic integers]]). When written multiplicatively, it may be denoted `$Z_n$' (note the font change) or `$C_n$'; either letter here stands for `cyclic' in one language or another. (It is a coincidence that the German words `Zahl', which gives us `$\mathbb{Z}$', and `zyklisch', which gives us `$Z$', begin with the same letter.) Besides `$\mathbb{Z}$', the infinite cyclic group may also be denoted in other ways: some variation of `$(\mathbb{Z},+)$' to indicate that we are using \emph{addition} of integers, or any of the above notations with either `$0$' or `$\infty$' in place of `$n$' (depending on whether we think of it as $\mathbb{Z}$ modulo $0$ or the cyclic group with order $\infty$). When written additively, the notation for the elements of a cyclic group are usually just the notation for integers; for the finite cyclic group of order $n$, we use the natural number less than $n$. In the finite case, we may also use brackets or some other notation to indicate [[equivalence classes]]. When written multiplicatively, any letter (`$e$', `$x$', `$a$', `$\xi$', etc) may be taken to stand for the generating element; then any other element is a power of this generator. When thought of as a multiplicative group of complex numbers, one generator is $\mathrm{e}^{2\mathrm{i}\pi/n}$, and the notation may reflect that. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{Ring}{}\subsubsection*{{Ring structure}}\label{Ring} Let $A$ be a cyclic group, and let $x$ be a generator of $A$. Then there is a unique [[ring]] structure on $A$ (making the original group the additive group of the ring) such that $x$ is the multiplicative identity $1$. If we identify $A$ with the additive group $\mathbb{Z}/n$ and pick (the equivalence class of) the integer $1$ for $x$, then the resulting ring is precisely the [[quotient ring]] $\mathbb{Z}/n$. In this way, a cyclic group equipped with the [[extra structure]] of a generator is the same thing (in the sense that their [[groupoids]] are [[equivalence of categories|equivalent]]) as a ring with the [[extra property]] that the underlying additive group is cyclic. For $n \gt 0$, the number of ring structures on the cyclic group $\mathbb{Z}/n$, which is the same as the number of generators, is $\phi(n)$, the [[totient function|Euler totient]] of $n$; the generators are those $i$ that are [[relatively prime numbers|relatively prime]] to $n$. While $\phi(1) = 1$, otherwise $\phi(n) \gt 1$ (another way to see that we have a structure and not just a property). For $\mathbb{Z}$ itself, there are two ring structures, since $1$ and $-1$ are the generators (and these are relatively prime to $0$). $\backslash$lineabreak \hypertarget{FundamentalTheoremOfCyclicGroups}{}\subsubsection*{{Fundamental theorem of cyclic groups}}\label{FundamentalTheoremOfCyclicGroups} For $n \in \mathbb{N}$, there is precisely one [[subgroup]] of the cyclic group $\mathbb{Z}/n\mathbb{N}$ of [[order of a group|order]] $d \in \mathbb{N}$ for each factor of $d$ in $n$, and this is the subgroup [[generators and relations|generated]] by $n/d \in \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$. Moreover, the [[lattice of subgroups]] of $\mathbb{Z}/n\mathbb{Z}$ is equivalently the dual of the lattice of natural numbers $\leq n$ ordered by divisibility. (e.g \hyperlink{Aluffi09}{Aluffi 09, pages 83-84}) This is a special case of the \emph{[[fundamental theorem of finitely generated abelian groups]]}. See there for more. \hypertarget{relation_to_finite_abelian_groups}{}\subsubsection*{{Relation to finite abelian groups}}\label{relation_to_finite_abelian_groups} \begin{prop} \label{}\hypertarget{}{} Every [[finite abelian group]] is a [[direct sum of abelian groups]] over cyclic groups. \end{prop} See at \emph{[[finite abelian group]]} for details. \hypertarget{group_cohomology}{}\subsubsection*{{Group cohomology}}\label{group_cohomology} For a discussion of the [[group cohomology]] of cyclic groups see at \emph{[[projective resolution]]} in the section \emph{\href{http://ncatlab.org/nlab/show/projective+resolution#CohomologyOfCyclicGroups}{Cohomology of cyclic groups}}. Relevant for [[Dijkgraaf-Witten theory]] is the fact \begin{displaymath} H^3_{grp}(\mathbb{Z}/n\mathbb{Z}, U(1)) \simeq \mathbb{Z}/n\mathbb{Z} \,. \end{displaymath} \hypertarget{linear_representations}{}\subsubsection*{{Linear representations}}\label{linear_representations} We discuss some of the [[representation theory]] of cyclic grou \begin{example} \label{IrreducibleRealRepresentationsOfCyclicGroups}\hypertarget{IrreducibleRealRepresentationsOfCyclicGroups}{} \textbf{([[irreducible representation|irreducible]] [[real numbers|real]] [[linear representations]] of [[cyclic groups]])} For $n \in \mathbb{N}$, $n \geq 2$, the [[isomorphism classes]] of [[irreducible representation|irreducible]] [[real numbers|real]] [[linear representations]] of the [[cyclic group]] $\mathbb{Z}/n$ are given by precisely the following: \begin{enumerate}% \item the 1-[[dimension|dimensional]] [[trivial representation]] $\mathbf{1}$; \item the 1-[[dimension|dimensional]] [[sign representation]] $\mathbf{1}_{sgn}$; \item the 2-[[dimension|dimensional]] standard representations $\mathbf{2}_k$ of [[rotations]] in the [[Euclidean plane]] by [[angles]] that are [[integer]] multiples of $2 \pi k/n$, for $k \in \mathbb{N}$, $0 \lt k \lt n/2$; hence the [[restricted representations]] of the defining real rep of [[SO(2)]] under the [[subgroup]] inclusions $\mathbb{Z}/n \hookrightarrow SO(2)$, hence the representations generated by [[real number|real]] $2 \times 2$ [[trigonometric function|trigonometric]] [[matrices]] of the form \begin{displaymath} \rho_{\mathbf{2}_k}(1) \;=\; \left( \itexarray{ cos(\theta) & -sin(\theta) \\ sin(\theta) & \phantom{-}cos(\theta) } \right) \phantom{AA} \text{with} \; \theta = 2 \pi \tfrac{k}{n} \,, \end{displaymath} \end{enumerate} (For $k = n/2$ the corresponding 2d representation is the [[direct sum]] of two copies of the [[sign representation]]: $\mathbf{2}_{n/2} \simeq \mathbf{1}_{sgn} \oplus \mathbf{1}_{sgn}$, and hence not [[irrep|irreducible]]. Moreover, for $k \gt n/2$ we have that $\mathbf{2}_{k}$ is irreducible, but [[isomorphism|isomorphic]] to $\mathbf{2}_{n-k} \simeq \mathbf{2}_{-k}$). In summary: \begin{displaymath} Rep^{irr}_{\mathbb{R}} \big( \mathbb{Z}/n \big)_{/\sim} \;=\; \big\{ \mathbf{1}, \mathbf{1}_{sgn}, \mathbf{2}_k \;\vert\; 0 \lt k \lt n/2 \big\} \end{displaymath} \end{example} (e.g. \href{representation+theory#tomDieck09}{tom Dieck 09 (1.1.6), (1.1.8)}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[group of order 2]] \item [[binary cyclic group]] \item [[multiplicative group of integers modulo n]] \item [[cyclic ring]] \item [[p-localization]] \item [[profinite completion of the integers]] \item [[cyclotomic field]] \item [[cyclotomic spectrum]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Paolo Aluffi, \emph{Algebra: Chapter 0, Part 0}, 2009 \item \emph{Cyclic groups} \href{http://math.kennesaw.edu/~plaval/math4361/groups_cyclic.pdf}{pdf} \item Joseph A. Gallian, \emph{Fundamental Theorem of Cyclic Groups}, Contemporary Abstract Algebra, p. 77, (2010) \end{itemize} Discussion of the cyclic group in the context of the [[classification of finite rotation groups]]: \begin{itemize}% \item [[Felix Klein]], chapter I.3 of \emph{Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade}, 1884, translated as \emph{Lectures on the Icosahedron and the Resolution of Equations of Degree Five} by George Morrice 1888, \href{https://archive.org/details/cu31924059413439}{online version} \end{itemize} [[!redirects cyclic group]] [[!redirects cyclic groups]] [[!redirects cyclic group of order 2]] \end{document}