\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cyclic homology} [[!redirects cyclic cohomology]] \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{the_chain_complex_for_cyclic_homology}{The chain complex for cyclic homology}\dotfill \pageref*{the_chain_complex_for_cyclic_homology} \linebreak \noindent\hyperlink{ordinary_cohomology_of__and_cyclic_homology_of_}{Ordinary cohomology of $\mathcal{L}X/S^1$ and cyclic homology of $X$}\dotfill \pageref*{ordinary_cohomology_of__and_cyclic_homology_of_} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{lodayquillentsygan_theorem}{Loday-Quillen-Tsygan theorem}\dotfill \pageref*{lodayquillentsygan_theorem} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} [[Hochschild homology]] may be understood as the [[cohomology]] of [[free loop space object]]s (as described there). These free loop space objects are canonically equipped with a [[circle group]]-[[action]] that rotates the loops. \emph{Cyclic homology} is the corresponding $S^1$-[[equivariant cohomology]] of free loop space objects. Like [[Hochschild homology]], [[cyclic homology]] is an \emph{additive invariant} of [[dg-categories]] or [[stable infinity-categories]], in the sense of [[noncommutative motives]]. It also admits a [[Dennis trace map]] from [[algebraic K-theory]], and has been successful in allowing computations of the latter. There are several definitions for the cyclic homology of an [[associative algebra]] $A$ (over a [[commutative ring]] $k$). [[Alain Connes]] originally defined cyclic homology over [[fields]] of [[characteristic zero]], as the [[homology]] groups of a cyclic variant of the [[chain complex]] computing [[Hochschild homology]]. [[Jean-Louis Loday]] and [[Daniel Quillen]] gave a definition via a certain [[double complex]] (for arbitrary commutative rings). [[Alain Connes|Connes]] gave another definition by associating to $A$ a [[cyclic object|cyclic]] [[vector space]] $A^\sharp$, and showing that the cyclic homology of $A$ may be computed as via [[Ext]]-groups $Ext^*(A^\sharp, k^\sharp)$. A fourth definition was given by [[Christian Kassel]], who showed that the cyclic homology groups may be computed as the homology groups of a certain [[mixed complex]] associated to $A$. Following [[Alexandre Grothendieck]], [[Charles Weibel]] gave a definition of [[cyclic homology]] (and [[Hochschild homology]]) for [[schemes]], using [[hypercohomology]]. On the other hand, the definition of [[Christian Kassel]] via [[mixed complexes]] was extended by [[Bernhard Keller]] to [[linear categories]] and [[dg-categories]], and he showed that the cyclic homology of the [[dg-category]] of [[perfect complexes]] on a (nice) [[scheme]] $X$ coincides with the cyclic homology of $X$ in the sense of [[Charles Weibel|Weibel]]. There are closely related variants called [[periodic cyclic homology]] and [[negative cyclic homology]]. There is a version for [[ring spectra]] called [[topological cyclic homology]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{the_chain_complex_for_cyclic_homology}{}\subsubsection*{{The chain complex for cyclic homology}}\label{the_chain_complex_for_cyclic_homology} Let $A$ be an [[associative algebra]] over a [[ring]] $k$. Write $C_\bullet(A,A)$ for the [[Hochschild homology]] [[chain complex]] of $A$ with coefficients in $A$. For each $n \in \mathbb{N}$ let $\lambda : C_n(A,A) \to C_n(A,A)$ be the $k$-linear map that cyclically permutes the elements and introduces a sign: \begin{displaymath} \lambda : (a_0, a_1, \cdots, a_{n-1}, a_n) \mapsto (-1)^n (a_n, a_0 , \cdots, a_{n-1}) \,. \end{displaymath} \begin{udefn} The \textbf{cyclic homology complex} $C^\lambda_\bullet(A)$ of $A$ is the quotient of the Hochschild homology complex of $A$ by cyclic permutations: \begin{displaymath} C_\bullet^\lambda(A) := C_\bullet(A,A)/im(Id-\lambda) \,. \end{displaymath} The [[homology]] of the cyclic complex, denoted \begin{displaymath} HC_n(A) := H_n( C_\bullet^\lambda(A) ) \end{displaymath} is called the \textbf{cyclic homology} of $A$. \end{udefn} \begin{udefn} The \textbf{cyclic cohomology} groups of $A$ Are the [[cohomology]] groups of the dual [[cochain complex]], denoted $HC^n(A)$. \end{udefn} \begin{udefn} If $I\subset A$ is an ideal, then the \textbf{relative cyclic homology} groups $HC_n(A,I)$ are the homology groups of the complex $C_\bullet(A,I) = ker(C_\bullet(A)\to C_\bullet(A/I))$. \end{udefn} \hypertarget{ordinary_cohomology_of__and_cyclic_homology_of_}{}\subsubsection*{{Ordinary cohomology of $\mathcal{L}X/S^1$ and cyclic homology of $X$}}\label{ordinary_cohomology_of__and_cyclic_homology_of_} Let $X$ be a [[simply connected topological space|simply connected]] [[topological space]]. The [[ordinary cohomology]] $H^\bullet$ of its free loop space is the [[Hochschild homology]] $HH_\bullet$ of its [[singular cohomology|singular chains]] $C^\bullet(X)$: \begin{displaymath} H^\bullet(\mathcal{L}X) \simeq HH_\bullet( C^\bullet(X) ) \,. \end{displaymath} Moreover the $S^1$-equivariant cohomology of the loop space, hence the ordinary cohomology of the [[cyclic loop space]] $\mathcal{L}X/^h S^1$ is the [[cyclic homology]] $HC_\bullet$ of the singular chains: \begin{displaymath} H^\bullet(\mathcal{L}X/^h S^1) \simeq HC_\bullet( C^\bullet(X) ) \end{displaymath} (\hyperlink{Loday11}{Loday 11}) If the [[coefficients]] are [[rational numbers|rational]], and $X$ is of [[finite type]] then this may be computed by the \emph{[[Sullivan model for free loop spaces]]}, see there the section on \emph{\href{Sullivan+model+of+free+loop+space#RelationToHochschildHomology}{Relation to Hochschild homology}}. In the special case that the [[topological space]] $X$ carries the structure of a [[smooth manifold]], then the singular cochains on $X$ are equivalent to the [[dgc-algebra]] of [[differential forms]] (the [[de Rham algebra]]) and hence in this case the statement becomes that \begin{displaymath} H^\bullet(\mathcal{L}X) \simeq HH_\bullet( \Omega^\bullet(X) ) \,. \end{displaymath} \begin{displaymath} H^\bullet(\mathcal{L}X/^h S^1) \simeq HC_\bullet( \Omega^\bullet(X) ) \,. \end{displaymath} This is known as \emph{[[Jones' theorem]]} (\hyperlink{Jones87}{Jones 87}) An [[(infinity,1)-category theory|infinity-category theoretic]] proof of this fact is indicated at \emph{\href{Hochschild+cohomology#JonesTheorem}{Hochschild cohomology -- Jones' theorem}}. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{lodayquillentsygan_theorem}{}\subsubsection*{{Loday-Quillen-Tsygan theorem}}\label{lodayquillentsygan_theorem} The \emph{[[Loday-Quillen-Tsygan theorem]]} (\hyperlink{LodayQuillen84}{Loday-Quillen 84}, \hyperlink{Tsygan83}{Tsygan 83}) states that for any [[associative algebra]], $A$ in [[characteristic zero]], the [[Lie algebra homology]] $H_\bullet(\mathfrak{gl}(A))$ of the infinite [[general linear Lie algebra]] $\mathfrak{gl}(A)$ with [[coefficients]] in $A$ is, up to a degree shift, the [[exterior algebra]] $\wedge(HC_{\bullet - 1}(A))$ on the [[cyclic homology]] $HC_{\bullet - 1}(A)$ of $A$: \begin{displaymath} H_\bullet(\mathfrak{gl}(A)) \;\simeq\; \wedge( HC_{\bullet - 1}(A) ) \end{displaymath} (see e.g \hyperlink{Loday07}{Loday 07, theorem 1.1}). \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[additive K-theory]] \item [[cycle category]], [[cyclic object]], [[Hochschild homology]] \item [[Sullivan model of free loop space]] \item [[dihedral homology]] \item [[topological cyclic homology]] \item [[Loday-Quillen-Tsygan theorem]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Foundational articles: \begin{itemize}% \item [[A. Connes]], \emph{Noncommutative differential geometry, Part I, the Chern character in $K$-homology}, Preprint, Inst. Hautes \'E{}tudes Sci., Bures-sur-Yvette, 1982; \emph{Part II, de Rham homology and noncommutative algebra}, Preprint, IH\'E{}S 1983; \emph{Cohomologie cyclique et foncteurs $Ext^n$}, C. R. Acad. Sci. Paris \textbf{296}, (1983), pp. 953--958, \href{http://www.ams.org/mathscinet-getitem?mr=777584}{MR86d:18007} \item [[A. Connes]], \emph{Cohomologie cyclique et foncteur $Ext^n$}, Comptes Rendues Ac. Sci. Paris S\'e{}r. A-B, 296 (1983), 953-958. \item [[B. L. Tsygan]], \emph{The homology of matrix Lie algebras over rings and the Hochschild homology}, Uspekhi Mat. Nauk, 38:2(230) (1983), 217--218. \item [[Jean-Louis Loday]], [[Daniel Quillen]], \emph{Cyclic homology and the Lie algebra homology of matrices}, Comment. Math. Helvetici 59 (1984) 565-591. \item [[Christian Kassel]], \emph{Cyclic homology, comodules and mixed complexes}, J. Alg. 107 (1987), 195--216. \end{itemize} Monographs: \begin{itemize}% \item [[Jean-Louis Loday]], \emph{Cyclic homology}, Grundlehren Math.Wiss. \textbf{301}, Springer (1998) \item [[Alain Connes]], \emph{Noncommutative geometry}, Acad. Press 1994, 661 p. \href{http://www.alainconnes.org/docs/book94bigpdf.pdf}{PDF} \item [[Max Karoubi]], \emph{Homologie cyclique et K-th\'e{}orie}, Ast\'e{}rique \textbf{149}, Soci\'e{}t\'e{} Math\'e{}matique de France (1987). \item [[Ib Madsen]], \emph{Algebraic K-theory and traces}, Current Developments in Mathematics, 1995. \end{itemize} Quick lecture notes: \begin{itemize}% \item [[D. Kaledin]], \emph{Tokyo lectures ``Homological methods in non-commutative geometry''}, (\href{http://imperium.lenin.ru/~kaledin/tokyo/final.pdf}{pdf}, \href{http://imperium.lenin.ru/~kaledin/tokyo/final.tex}{TeX}); and related but different \href{http://imperium.lenin.ru/~kaledin/seoul}{Seoul lectures} \item [[Masoud Khalkhali]], \emph{A short survey of cyclic cohomology}, \href{http://arxiv.org/abs/1008.1212}{arxiv/1008.1212} \end{itemize} Some modern treatments: \begin{itemize}% \item [[Bernhard Keller]], \emph{On the cyclic homology of ringed spaces and schemes}, Doc. Math. J. DMV 3 (1998), 231-259, \href{http://www.math.jussieu.fr/~keller/publ/KellerHCSchemes.pdf}{pdf}. \item [[Bernhard Keller]], \emph{On the cyclic homology of exact categories}, Journal of Pure and Applied Algebra 136 (1999), 1-56, \href{http://www.math.jussieu.fr/~keller/publ/cyex.pdf}{pdf}. \item [[Bernhard Keller]], \emph{Invariance and Localization for Cyclic Homology of DG algebras}, Journal of Pure and Applied Algebra, 123 (1998), 223-273, \href{http://www.math.jussieu.fr/~keller/publ/ilc.pdf}{pdf}. \item [[Charles Weibel]], \emph{Cyclic homology for schemes}, Proceedings of the AMS, 124 (1996), 1655-1662, \href{http://www.math.uiuc.edu/K-theory/0043/}{web}. \item [[D. Kaledin]], \emph{Cyclic homology with coefficients}, \href{http://arxiv.org/abs/math.KT/0702068}{math.KT/0702068}, to appear in Yu. Manin's 70th anniversary volume. \item [[E. Getzler]], [[M. Kapranov]], \emph{Cyclic operads and cyclic homology}, in: ``Geometry, Topology and Physics for R. Bott'', ed. S.-T. Yau, p. 167-201, International Press, Cambridge MA, 1995, \href{http://www.math.northwestern.edu/~getzler/Papers/cyclic.pdf}{pdf} \item [[Teimuraz Pirashvili]], [[Birgit Richter]], \emph{Hochschild and cyclic homology via functor homology}, K-Theory \textbf{25} (2002), no. 1, 39--49, \href{http://www.ams.org/mathscinet-getitem?mr=1899698}{MR2003c:16011}, \href{http://dx.doi.org/10.1023/A:1015064621329}{doi} \item Jolanta Somiska, \emph{Decompositions of the category of noncommutative sets and Hochschild and cyclic homology}, Cent. Eur. J. Math. \textbf{1} (2003), no. 3, 327--331, \href{http://www.ams.org/mathscinet-getitem?mr=1992895}{MR2004f:16011}, \href{http://dx.doi.org/10.2478/BF02475213}{doi} \end{itemize} Some influential original references from 1980s: \begin{itemize}% \item [[Boris Tsygan]], [[Boris Feigin]], \emph{[[Additive K-theory]]}, in LNM 1289 (1987), edited by Yu. I. Manin, pp. 67--209, seminar 1984-1986 in Moscow), \href{http://www.ams.org/mathscinet-getitem?mr=923136}{MR89a:18017}; \emph{ K- }, . ., 19:2 (1985), 52---62, \href{http://www.mathnet.ru/php/getFT.phtml?jrnid=faa&paperid=1358&what=fullt&option_lang=rus}{pdf}, \href{http://www.ams.org/mathscinet-getitem?mr=800920}{MR88e:18008}; Engl. transl. in B. L. Fegin, B. L. Tsygan, \emph{Additive $K$-theory and crystalline cohomology}, Functional Analysis and Its Applications, 1985, 19:2, 124--132. \item [[T. Goodwillie]], \emph{Cyclic homology, derivations, and the free loopspace}, Topology \textbf{24} (1985), no. 2, 187--215, \href{http://www.ams.org/mathscinet-getitem?mr=793184}{MR87c:18009}, \end{itemize} The relation to [[cyclic loop spaces]]: \begin{itemize}% \item [[John D.S. Jones]], \emph{Cyclic homology and equivariant homology}, Invent. Math. \textbf{87}, 403-423 (1987) (\href{https://math.berkeley.edu/~nadler/jones.pdf}{pdf}) \item [[Jean-Louis Loday]], \emph{Free loop space and homology} (\href{https://arxiv.org/abs/1110.0405}{arXiv:1110.0405}) \end{itemize} The [[Loday-Quillen-Tsygan theorem]] is originally due, independently, to \begin{itemize}% \item [[Jean-Louis Loday]], [[Daniel Quillen]], \emph{Cyclic homology and the Lie algebra homology of matrices} Comment. Math. Helv., 59(4):569–591, 1984. \end{itemize} and \begin{itemize}% \item [[Boris Tsygan]], \emph{Homology of matrix algebras over rings and the Hochschild homology}, Uspeki Math. Nauk., 38:217–218, 1983. \end{itemize} Lecture notes include \begin{itemize}% \item [[Jean-Louis Loday]], \emph{Cyclic Homology Theory, Part II}, notes taken by Pawe l Witkowsk (2007) (\href{https://www.impan.pl/swiat-matematyki/notatki-z-wyklado~/loday_cht_2.pdf}{pdf}) \end{itemize} [[!redirects cyclic cohomology]] [[!redirects cyclic (co)homology]] \end{document}