\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{cyclic set} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category Theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{as_a_classifying_topos}{As a classifying topos}\dotfill \pageref*{as_a_classifying_topos} \linebreak \noindent\hyperlink{ModelCategoryStructure}{Model category structure and $S^1$-equivariant homotopy theory}\dotfill \pageref*{ModelCategoryStructure} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{cyclic set} is a [[presheaf]] on the \emph{[[cyclic category]]} (which is often called [[Connes' cyclic category]] though it is cocyclic, with the usual contravariant confusion), which is intermediate between a [[symmetric set]] and a [[simplicial set]]. With [[Set]] replaced by a general [[category]] one speaks of a \emph{[[cyclic object]]}. The concept of cyclic sets/objects is used in the description of the cyclic structure on [[Hochschild homology]]/[[Hochschild cohomology]] and hence for the discussion on [[cyclic homology]]/[[cyclic cohomology]]. Just like the [[category]] of [[geometric shapes for higher structures|shapes]] for [[simplicial sets]] (the [[simplex category]]) may be identified with the full [[subcategory]] of [[Cat]] on the finite nonempty [[ordinals]] $[n]$; and like the shape category for [[symmetric sets]] ([[FinSet]]) may be identified with the full subcategory of [[Cat]] on their [[localizations]] $[n]^{-1}[n]$, so the [[cycle category]] $\Lambda$, is the full subcategory of [[Cat]] whose [[objects]] are the categories $[n]_\Lambda$ which are freely generated by the graph $0\to 1\to 2\to\ldots\to n\to 0$. If the overall composition $0\to 0$ is set equal to identity we obtain symmetric sets again. We can also explain cyclic sets and more general [[cyclic objects]] in terms of standard generators. A $\mathbf{Z}$-cyclic (synonym: [[paracyclic object]]) in a [[category]] $C$ is a [[simplicial object]] $F_\bullet$ in $C$ together with a sequence of [[isomorphisms]] $t_n : F_n \rightarrow F_n$, $n\geq 1$, such that \begin{displaymath} \itexarray{ \partial_i t_n = t_{n-1} \partial_{i-1},\,\, i \gt 0, & \sigma_i t_n = t_{n+1} \sigma_{i-1},\,\, i \gt0, \\ \partial_0 t_n = \partial_n, & \sigma_0 t_n = t_{n+1}^2 \sigma_n, } \end{displaymath} where $\partial_i$ are boundaries, $\sigma_i$ are degeneracies. A $\mathbf Z$-cocyclic ([[paracocyclic object|paracocyclic]]) object in $C$ is a $\mathbf{Z}$-cyclic object in $C^{\mathrm{op}}$. $\mathbf Z$-(co)cyclic object is (co)cyclic if, in addition, $t_n^{n+1} = 1$ \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{as_a_classifying_topos}{}\subsubsection*{{As a classifying topos}}\label{as_a_classifying_topos} The [[category]] of cyclic sets, being a [[presheaf category]] is a [[topos]], and hence is the [[classifying topos]] for some [[geometric theory]]. This turns out to be the theory of [[abstract circles]] (\hyperlink{Moerdijk96}{Moerdijk 96}). A further analysis can be found in (\hyperlink{CaramelloWentzlaff14}{Caramello Wentzlaff 14}). Accordingly there is an [[infinity-action]] of the [[circle group]] on the [[geometric realization]] of a cyclic set (see also \hyperlink{Drinfeld03}{Drinfeld 03}). \hypertarget{ModelCategoryStructure}{}\subsubsection*{{Model category structure and $S^1$-equivariant homotopy theory}}\label{ModelCategoryStructure} There is a [[model category]]-structure on the category of cyclic sets, which makes it a presentation for $S^1$-[[equivariant homotopy theory]] (\hyperlink{Spalinski95}{Spalinski 95}, \hyperlink{Blumberg04}{Blumberg 04}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[cyclic cohomology]] \item [[cyclotomic spectrum]] \item [[skew-simplicial set]], [[symmetric set]], [[simplicial set]] \item [[cyclotomic spectrum]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The definition is originally due to \begin{itemize}% \item [[Alain Connes]], \emph{Cohomologie cyclique et foncteurs $Ext^n$}, C.R.A.S. \textbf{269} (1983), S\'e{}rie I, 953-958 \end{itemize} Connections to [[simplicial sets]] are in: \begin{itemize}% \item [[Alain Connes]], Caterina Consani, \emph{Cyclic structures and the topos of simplicial sets}, \href{http://arxiv.org/abs/1309.0394}{1309.0394} \end{itemize} The identification of the category of cyclic sets as the [[classifying topos]] for [[abstract circles]] is due to \begin{itemize}% \item [[Ieke Moerdijk]], \emph{Cyclic sets as a classifying topos}, 1996 ([[MoerdijkCyclic.pdf:file]]) \item Olivia Caramello, Nicholas Wentzlaff, \emph{Cyclic theories}, 2014 (\href{http://arxiv.org/abs/1406.5479}{arXiv:1406.5479}) \end{itemize} The resulting circle-action on the ([[geometric realization]] of) cyclic sets is also discussed in \begin{itemize}% \item [[Vladimir Drinfeld]], \emph{On the notion of geometric realization} (\href{http://arxiv.org/abs/math/0304064}{arXiv:0304064}) \end{itemize} The [[homotopy theory]] of cyclic sets and its relation to $S^1$-[[equivariant homotopy theory]] is discussed in \begin{itemize}% \item J. Spalinski, \emph{Strong homotopy theory of cyclic sets}, J. of Pure and Appl. Alg. 99 (1995), 35--52. \item [[Andrew Blumberg]], \emph{A discrete model of $S^1$-homotopy theory} (\href{http://arxiv.org/abs/math/0411183}{arXiv:math/0411183}) \end{itemize} An old query is archived in $n$Forum \href{http://nforum.mathforge.org/discussion/5822/cyclic-set/?Focus=46240#Comment_46240}{here}. There are fairly recent slides by Spalinski on the subject \href{http://www.mimuw.edu.pl/~cat09/slides/Spalinski.pdf}{here}, which also discuss relationships with [[dihedral sets]] and [[quaternionic set]]s, as studied by [[Loday]]. See also \begin{itemize}% \item [[Cary Malkiewich]], \emph{A visual introduction to cyclic sets and cyclotomic spectra}, 2015 (\href{http://math.uiuc.edu/~cmalkiew/ytm_2015.pdf}{pdf}) \end{itemize} [[!redirects cyclic sets]] \end{document}