\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{dark matter} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{fields_and_quanta}{}\paragraph*{{Fields and quanta}}\label{fields_and_quanta} [[!include fields and quanta - table]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Properties}{On galactic scales}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{CuspCoreProblem}{Cusp-core behaviour}\dotfill \pageref*{CuspCoreProblem} \linebreak \noindent\hyperlink{GalacticRotationCurves}{Galactic rotation profile}\dotfill \pageref*{GalacticRotationCurves} \linebreak \noindent\hyperlink{MissingSatellites}{Missing satellites?}\dotfill \pageref*{MissingSatellites} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{Evidence}{Evidence}\dotfill \pageref*{Evidence} \linebreak \noindent\hyperlink{ReferencesCoreCuspProblem}{Core-cusp problem}\dotfill \pageref*{ReferencesCoreCuspProblem} \linebreak \noindent\hyperlink{ReferencesComputerSimulation}{Computer simulation}\dotfill \pageref*{ReferencesComputerSimulation} \linebreak \noindent\hyperlink{galaxy_rotation_curves}{Galaxy rotation curves}\dotfill \pageref*{galaxy_rotation_curves} \linebreak \noindent\hyperlink{axions}{Axions}\dotfill \pageref*{axions} \linebreak \noindent\hyperlink{lightest_superpartner}{Lightest super-partner}\dotfill \pageref*{lightest_superpartner} \linebreak \noindent\hyperlink{ReferencesGravitinos}{Gravitinos}\dotfill \pageref*{ReferencesGravitinos} \linebreak \noindent\hyperlink{flavour_anomalies}{Flavour anomalies}\dotfill \pageref*{flavour_anomalies} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The [[observable universe]] at large scales seems to behave as if it contains large amount of [[matter]] which does have a [[gravity|gravitational effect]] but does not emit [[electromagnetic radiation]] and hence remains ``dark'' to telescopes. This hypothetical matter is therefore called \emph{dark matter}. There are various astronomical observations that suggest the existence of dark matter \begin{enumerate}% \item galaxy rotation curves -- the speed of rotation of [[galaxies]] as a function of the distance from their center cannot be explained by the observed visible matter, but an explanation of this dependence by gravitating matter requires the presence of plenty of dark matter; \item cosmic microwave background fluctuations -- the measured fluctuations in the [[cosmic microwave background]] are very well fitted by the [[standard model of cosmology]] with cold dark matter (CDM) included. (see also \hyperlink{Resonaances}{Resonaances, 18 Jan 2013}). \item Simulations of [[structure formation]] in the universe seem to require existence of dark matter in order to reproduce results compatible with observation. \end{enumerate} Any further details about the nature of this hypothetical dark matter remain elusive to date. Possible classes of candidates go by various names. For instance ``[[weakly interacting massivle particle|weakly interacting massive particles]]'' (``[[WIMP]]''s), hence massive particles that interact via [[gravity]] and the [[weak nuclear force]], but not via [[electromagnetism]]. Certain [[neutrino]]-dark matter scenarios are being discussed (\hyperlink{NeutrinoWhite16}{Neutrino White 16}) In [[supersymmetry|supersymmetric]] [[theory (physics)|theories]] with [[R-parity]] imposed, the \emph{lightest supersmmetric particle} (LSP, such as the [[gravitino]] or the [[neutralino]]) is traditionally regarded as a natural candidate for dark matter (\hyperlink{EHNOS84}{EHNOS 84}, reviewed in \hyperlink{EllisOlive10}{Ellis-Olive 10}). \hypertarget{Properties}{}\subsection*{{On galactic scales}}\label{Properties} The cold dark matter paradigm always worked excellently on cosmic scales, while seemingly facing problems with reproducing various observations on the scale of [[galaxies]]. But various recent computer simulations (e.g. with \href{structure+formation#ReferencesFIRE}{FIRE}, see the references \hyperlink{ReferencesComputerSimulation}{below}) point to these problems all going away when the complex dynamics of star-formation back-reaction on galactic [[structure formation]] is taken into account. We discuss this for: \begin{enumerate}% \item \emph{\hyperlink{CuspCoreProblem}{The cusp-core behaviour}} \item \emph{\hyperlink{GalacticRotationCurves}{Galactic rotation profiles}} \item \emph{\hyperlink{MissingSatellites}{Missing satellites}} \end{enumerate} \hypertarget{CuspCoreProblem}{}\subsubsection*{{Cusp-core behaviour}}\label{CuspCoreProblem} Early numerical simulation of dark matter exhibited dark matter halos around galaxies with a sharp density maximum at the center of the galaxy -- called a ``cusp'' in the density profile -- while observation on actual galaxies tends to favour a noticeably smoother density distribution at the center -- called a ``core'' of the density profile. This discrepancy between [[theory (physics)|theory]] and [[experiment]] is (or was) known as the \emph{cusp-core problem} for dark matter [[model (physics)|models]] (see the references \hyperlink{ReferencesCoreCuspProblem}{below}). It is (or was) one of several issues that the dark matter model has (or had) on the scale of galaxies and smaller. There are two potential resolutions to this problem: a) Either dark matter is more ``exotic'' than assumed in these simulations, such as being [[fuzzy dark matter]] or similar. Or, b), more mundanely, the existing simulations do not properly resolve a subtle effect shown already by more ordinary dark matter. Recent investigations support possibility b), indicating that the density cusps seen in previous simulations are but an artifact of overly simplified numerical models, and that would-be cusps are diluted and hence smoothed out by bursty star formation leading to dark matter heating (\hyperlink{PontzenGovernato14}{Pontzen-Governato 14}, \hyperlink{ReadWalkerSteger18}{Read-Walker-Steger-18}) and/or by dynamical friction in the interstallar medium (\hyperlink{ESH01}{ESH 01}). See \hyperlink{Read19}{Read 19} for review. From [[Justin Read]] \href{https://twitter.com/ReadDark/status/1032176578808168448}{22 Aug 2018} on \hyperlink{ReadWalkerSteger18}{Read-Walker-Steger 18}: \begin{quote}% On large scales, the [[standard model of cosmology|standard cosmological model]] (LCDM) gives an excellent description of the [[cosmic microwave background]] [[radiation]] and the [[structure formation|growth of structure]]. However, on small scales, in our cosmic backyard known as the Local Group, there have been long-standing puzzles. The oldest of these is the “cusp-core” problem. Gas rich dwarf galaxies have much less dark matter (DM) in their inner regions than early numerical models predicted. This could point to more exotic DM models, or to a failure of the cosmological model. However, there is a simpler solution. The early numerical models, above, considered a universe that contains only DM. Recent models that include gas cooling, star formation, and gas blow-out due to exploding stars find that star formation in dwarfs is bursty. This bursty star formation occurs due to repeated cycles of gas inflow and outflow. These cause the inner gravitational potential of the dwarf galaxy to fluctuate, kinematically ``heating up'' the dark matter and lowering its inner density (\hyperlink{PontzenGovernato14}{Pontzen-Governato 14}). A key prediction of such models is that, at a fixed dark matter halo mass, more star formation leads to more dark matter ``heating'' and, therefore, a lower inner dark matter density, at least in dwarf galaxies. This is the prediction we set out to test in \hyperlink{ReadWalkerSteger18}{Read-Walker-Steger 18}. \end{quote} $\backslash$linebreak \hypertarget{GalacticRotationCurves}{}\subsubsection*{{Galactic rotation profile}}\label{GalacticRotationCurves} Computer simulation (\href{https://fire.northwestern.edu}{FIRE}) of [[galaxy|galactic]] [[structure formation]] using the [[standard model of cosmology|standard]] [[cold dark matter]] [[model (physics)|model]] qualitatively reproduces the peculiar [[galactic rotation curves]] that motivated dark matter (or [[MOND]], for that matter) in the first place (\hyperlink{Hopkins17}{Hopkins et al. 17, Figure 4, Figure 5}): $\backslash$begin\{center\} $\backslash$begin\{imagefromfile\} ``file\_name'': ``FIRE2GalacticRotationCurves.jpg'', ``width'': 800 $\backslash$end\{imagefromfile\} $\backslash$end\{center\} \begin{quote}% graphics grabbed from (\hyperlink{Hopkins17}{Hopkins et al. 17}) \end{quote} and also reproduces well the baryonic [[Tully-Fisher relation]] (\hyperlink{ElBadry18}{El-Badry et al. 18, Figure 4}) which used to be an issue in the [[standard model of cosmology|standard]] [[cold dark matter]] [[model (physics)|model]]: $\backslash$begin\{center\} $\backslash$begin\{imagefromfile\} ``file\_name'': ``FIRE2TullyFisher.jpg'', ``width'': 500 $\backslash$end\{imagefromfile\} $\backslash$end\{center\} \begin{quote}% graphics grabbed from (\hyperlink{ElBadry18}{El-Badry et al. 18}) \end{quote} More in detail, [[galaxy rotation curves]] exhibit a close correlation between [[angular velocity]] and total \emph{visible} enclosed math at any given [[radius]], called the \emph{[[radial acceleration relation]]} (RAR) or \emph{[[mass-discrepancy acceleration relation]]}. This, too, is reproduced in [[cold dark matter]]-[[model (in theoretical physics)]] computer simulation (\hyperlink{SantosSantosEtAl15}{Santos-Santos et al. 15}, \hyperlink{CintioLelli15}{Cintio-Lelli 15}, \hyperlink{KellerWadsley16}{Keller-Wadsley 16}, \hyperlink{LudlowEtAl16}{Ludlow et al 16}). These early simulations were not found conclusive in \hyperlink{LelliEtAl16}{Lelli et al 16, section 8.2}. But more detailed analysis (\hyperlink{PSF18}{PSF 18}) and more refined simulation (\hyperlink{DuttonMaccioObrejaBuck19}{Dutton-Maccio-Obreja-Buck 19}) has then been claimed to confirm the statement. A conceptual explanation of the mechanism by stellar feedback is discussed in \hyperlink{GBFH19}{GBFH 19}. \hypertarget{MissingSatellites}{}\subsubsection*{{Missing satellites?}}\label{MissingSatellites} On the apparent resolution of the \href{https://en.wikipedia.org/wiki/Dwarf_galaxy_problem}{missing satellite problem}: \hyperlink{GarrisonKimmel17}{Garrison-Kimmel et al. 17}, see \hyperlink{GarrisonKimmel18}{Garrison-Kimmel 18} $\backslash$linebreak \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[bullet cluster]] \item [[fuzzy dark matter]] \item [[dark energy]], [[dark radiation]] \item [[standard model of cosmology]] \item [[MOND]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Review includes \begin{itemize}% \item Jaan Einasto, \emph{Dark matter} (\href{https://arxiv.org/abs/0901.0632}{arXiv:0901.0632}) 2009 \item [[Syksy Räsänen]], \emph{Dark matter} cosmo 2015 lecture notes (\href{http://www.courses.physics.helsinki.fi/teor/cos1/cosmo2015_07.pdf}{pdf}) \item Wikipedia, \emph{\href{http://en.wikipedia.org/wiki/Dark_matter}{Dark matter}} \item [[Matthew Strassler]], \emph{\href{http://profmattstrassler.com/articles-and-posts/relativity-space-astronomy-and-cosmology/dark-matter/current-hints-of-dark-matter-413/}{Current hints of dark matter}} \item Resonaances, \emph{\href{http://resonaances.blogspot.de/2013/01/how-many-neutrinos-in-sky.html}{How many neutrinos in the sky}} \item Gianfranco Bertone, Dan Hooper, \emph{A History of Dark Matter} (\href{https://arxiv.org/abs/1605.04909}{arXiv:1605.04909}) \item [[Daniel Hooper]], \emph{In Defense of Dark Matter}, 2018 (\href{http://online.kitp.ucsb.edu/online/cdm-c18/hooper/}{web}) \end{itemize} Discussion of possible matter representations that could serve as dark matter: \begin{itemize}% \item Marco Cirelli, Nicolao Fornengo, [[Alessandro Strumia]], \emph{Minimal Dark Matter}, Nucl.Phys.B753:178-194, 2006 (\href{https://arxiv.org/abs/hep-ph/0512090}{arXiv:hep-ph/0512090}) \end{itemize} Discxussion of [[neutrino]]-dark matter: \begin{itemize}% \item \emph{A White Paper on keV Sterile Neutrino Dark Matter}, Journal of Cosmology and Astroparticle Physics, Volume 2017, January 2017 (\href{https://arxiv.org/abs/1602.04816}{arXiv:1602.04816}) \end{itemize} \hypertarget{Evidence}{}\subsubsection*{{Evidence}}\label{Evidence} Evidence for dark matter on large cosmic scales is extremely strong, see the above reviews (\ldots{}). Evidence on smaller scales, starting around the scale of galaxies is problematic, see the above reviews (\ldots{}). In particular, as yet there is no direct detection of any dark matter particle. (\ldots{}) Outlook on prospect of direct detection of dark matter, as of 2018: \begin{itemize}% \item Gianfranco Bertone, Tim M. P. Tait, \emph{A New Era in the Quest for Dark Matter}, Nature volume 562, pages 51–56 (2018) (\href{https://arxiv.org/abs/1810.01668}{arXiv:1810.01668}) \end{itemize} \hypertarget{ReferencesCoreCuspProblem}{}\subsubsection*{{Core-cusp problem}}\label{ReferencesCoreCuspProblem} \begin{itemize}% \item Amr El-Zant, Isaac Shlosman, Yehuda Hoffman, \emph{Dark Halos: The Flattening of the Density Cusp by Dynamical Friction}, The Astrophysical Journal, Volume 560, Number 2 (\href{https://arxiv.org/abs/astro-ph/0103386}{arXiv:astro-ph/0103386}) \item Andrew Pontzen, Fabio Governato, \emph{Cold dark matter heats up}, Nature, 506, 171 - 178 (13 Feb 2014) (\href{https://arxiv.org/abs/1402.1764}{arXiv:1402.1764}) \item Jose Oñorbe, Michael Boylan-Kolchin, James S. Bullock, Philip F. Hopkins, Dušan Kerěs, Claude-André Faucher-Giguère, Eliot Quataert, Norman Murray, \emph{Forged in FIRE: cusps, cores, and baryons in low-mass dwarf galaxies}, Monthly Notices of the Royal Astronomical Society, Volume 454, Issue 2, 1 December 2015 (\href{https://arxiv.org/abs/1502.02036}{arXiv:1502.02036}) \item [[Justin Read]], O. Agertz, M. L. M. Collins, \emph{Dark matter cores all the way down}, Monthly Notices of the Royal Astronomical Society, Volume 459, Issue 3, 1 July 2016 (\href{https://arxiv.org/abs/1508.04143}{arXiv:1508.04143}) \item [[Justin Read]], M. G. Walker, P. Steger, \emph{Dark matter heats up in dwarf galaxies}, Monthly Notices of the Royal Astronomical Society (\href{https://arxiv.org/abs/1808.06634}{arXiv:1808.06634}, \href{https://doi.org/10.1093/mnras/sty3404}{doi:10.1093/mnras/sty3404}, \href{http://online.kitp.ucsb.edu/online/cdm-c18/read/}{talk recording}, \href{https://www.surrey.ac.uk/news/dark-matter-move}{press release}) \item [[Justin Read]], \emph{\href{https://www.simonsfoundation.org/event/dark-matter-heats-up-in-dwarf-galaxies/}{Dark matter heats up in dwarf galaxies}}, Simons Foundation Lecture 2019 \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Cuspy_halo_problem}{Cuspy halo problem}} \end{itemize} \hypertarget{ReferencesComputerSimulation}{}\subsubsection*{{Computer simulation}}\label{ReferencesComputerSimulation} Discussion of computer simulation of [[dark matter]] [[structure formation]] on [[galaxy]]-scales: \begin{itemize}% \item Hopkins et al. \emph{FIRE-2 Simulations: Physics versus Numerics in Galaxy Formation}. Monthly Notices of the Royal Astronomical Society, Volume 480, Issue 1, 11 October 2018, Pages 800–863 (\href{https://arxiv.org/abs/1702.06148}{arXiv:1702.06148}, \href{https://doi.org/10.1093/mnras/sty1690}{doi:10.1093/mnras/sty1690}) \item El-Badry et al. \emph{Gas Kinematics in FIRE Simulated Galaxies Compared to Spatially Unresolved HI Observations}, Monthly Notices of the Royal Astronomical Society, Volume 477, Issue 2, 21 June 2018, Pages 1536–1548 (\href{https://arxiv.org/abs/1801.03933}{arXiv:1801.03933}, \href{https://doi.org/10.1093/mnras/sty730}{doi:10.1093/mnras/sty730}) \item Shea Garrison-Kimmel et al. \emph{Not so lumpy after all: modeling the depletion of dark matter subhalos by Milky Way-like galaxies} (\href{https://arxiv.org/abs/1701.03792}{arXiv:1701.03792}) \item Shea Garrison-Kimmel, \emph{Next-generation Galaxy Formation Simulations with FIRE}, 2018 (\href{https://youtu.be/sSkrm66uDvw}{video recording}) \end{itemize} \hypertarget{galaxy_rotation_curves}{}\subsubsection*{{Galaxy rotation curves}}\label{galaxy_rotation_curves} On the [[radial acceleration relation]]: \begin{itemize}% \item Arianna Di Cintio, Federico Lelli, \emph{The mass discrepancy acceleration relation in a $\Lambda CDM$ context}, Monthly Notices of the Royal Astronomical Society: Letters, Volume 456, Issue 1, 11 February 2016, Pages L127–L131 (\href{https://arxiv.org/abs/1511.06616}{arXiv:1511.06616}, \href{https://doi.org/10.1093/mnrasl/slv185}{doi:10.1093/mnrasl/slv185}) \item Isabel M. Santos-Santos et al. \emph{The distribution of mass components in simulated disc galaxies} (\href{https://arxiv.org/abs/1510.02474}{arXiv:1510.02474}) \item B.W. Keller, J.W. Wadsley, \emph{$\Lambda CDM$ is Consistent with SPARC Radial Acceleration Relation} (\href{https://arxiv.org/abs/1610.06183}{arXiv:1610.06183}) \item Aaron D. Ludlow et. al. \emph{The Mass-Discrepancy Acceleration Relation: a Natural Outcome of Galaxy Formation in Cold Dark Matter halos}, Phys. Rev. Lett. 118, 161103 (2017) (\href{https://arxiv.org/abs/1610.07663}{arXiv:1610.07663}) \item Chiara Di Paolo, Paolo Salucci, Jean Philippe Fontaine, \emph{The Radial Acceleration Relation (RAR): the crucial cases of Dwarf Discs and of Low Surface Brightness galaxies}, ApJ 2019 (\href{https://arxiv.org/abs/1810.08472}{arXiv:1810.08472}) \item Chiara Di Paolo, Paolo Salucci, Jean Philippe Fontaine, \emph{The Radial Acceleration Relation (RAR): the crucial cases of Dwarf Discs and of Low Surface Brightness galaxies}, ApJ 2019 (\href{https://arxiv.org/abs/1810.08472}{arXiv:1810.08472}) \item Aaron A. Dutton, Andrea V. Macciò, Aura Obreja, Tobias Buck, \emph{NIHAO XVIII: Origin of the MOND phenomenology of galactic rotation curves in a LCDM universe} (\href{https://arxiv.org/abs/1902.06751}{arXiv:1902.06751}) \end{itemize} Critical comments in \begin{itemize}% \item Federico Lelli, Stacy S. McGaugh, James M. Schombert, Marcel S. Pawlowski, section 8.2 of \emph{One Law To Rule Them All: The Radial Acceleration Relation of Galaxies} (\href{https://arxiv.org/abs/1610.08981}{arXiv:1610.08981}) \end{itemize} Conceptual explanation by stellar feedback: \begin{itemize}% \item Michael Y. Grudić, Michael Boylan-Kolchin, Claude-André Faucher-Giguère, Philip Hopkins, \emph{Stellar feedback sets the universal acceleration scale in galaxies} (\href{https://arxiv.org/abs/1910.06345}{arxiv:1910.06345}) \end{itemize} \hypertarget{axions}{}\subsubsection*{{Axions}}\label{axions} The observation that the ``invisible [[axion]]'' is a candidate for dark matter is due to three groups: \begin{itemize}% \item [[John Preskill]], M. Wise, [[Frank Wilcek]], \emph{Cosmology of the invisible axion}, Phys. Lett. B 120:127-32 (1983) \item L.F. Abbott, P. Sikivie, \emph{A Cosmological Bound on the Invisible Axion}, Phys.Lett. B120:133-36 (1983) \item [[Michael Dine]], [[Willy Fischler]], \emph{The Not So Harmless Axion}, Phys.Lett. B120:137-141 (1983) \end{itemize} A proposal that [[axions]] account for [[fuzzy dark matter]], and thus fix the [[WIMP]] model for dark matter with its problem of reproducing galactic rotation curves, is in \begin{itemize}% \item Lam Hui, Jeremiah P. Ostriker, Scott Tremaine, [[Edward Witten]], \emph{On the hypothesis that cosmological dark matter is composed of ultra-light bosons}, Phys. Rev. D 95, 043541 (2017) (\href{https://arxiv.org/abs/1610.08297}{arXiv:1610.08297}) \end{itemize} \hypertarget{lightest_superpartner}{}\subsubsection*{{Lightest super-partner}}\label{lightest_superpartner} The observation that the lightest supersymmetric particle would be a natural dark matter candidate goes back to \begin{itemize}% \item [[John Ellis]], J.S. Hagelin, Dimitri V. Nanopoulos, [[Keith Olive]], M. Srednicki \emph{Supersymmetric relics from the Big Bang}, Nuclear Physics B 2382: 453-76, 1984 (\href{http://inspirehep.net/record/191839?ln=en}{SPIRE}) \end{itemize} with review in \begin{itemize}% \item [[John Ellis]], [[Keith Olive]], \emph{Supersymmetric Dark Matter Candidates} (\href{http://arxiv.org/abs/1001.3651}{arXiv:1001.3651}) \end{itemize} \hypertarget{ReferencesGravitinos}{}\subsubsection*{{Gravitinos}}\label{ReferencesGravitinos} On the [[gravitino]] as a dark matter candidate: \begin{itemize}% \item [[John Ellis]], [[Keith Olive]], \emph{Supersymmetric Dark Matter Candidates} (\href{http://arxiv.org/abs/1001.3651}{arXiv:1001.3651}) \end{itemize} A proposal for super-heavy [[gravitinos]] as [[dark matter]], by embedding [[D=4 N=8 supergravity]] into [[E10]]-[[U-duality]]-invariant [[M-theory]]: \begin{itemize}% \item Krzysztof A. Meissner, [[Hermann Nicolai]], \emph{Standard Model Fermions and Infinite-Dimensional R-Symmetries}, Phys. Rev. Lett. 121, 091601 (2018) (\href{https://arxiv.org/abs/1804.09606}{arXiv:1804.09606}) \item Krzysztof A. Meissner, [[Hermann Nicolai]], \emph{Planck Mass Charged Gravitino Dark Matter}, Phys. Rev. D 100, 035001 (2019) (\href{https://arxiv.org/abs/1809.01441}{arXiv:1809.01441}) \end{itemize} following the proposal towards the end of \begin{itemize}% \item [[Murray Gell-Mann]], introductory talk at \emph{\href{https://en.wikipedia.org/wiki/Shelter_Island_Conference}{Shelter Island II}}, 1983 ([[Gell-Mann\_ShelterIslandII\_1983.pdf:file]]) in: \emph{Shelter Island II: Proceedings of the 1983 Shelter Island Conference on Quantum Field Theory and the Fundamental Problems of Physics}. MIT Press. pp. 301--343. ISBN 0-262-10031-2. \end{itemize} \hypertarget{flavour_anomalies}{}\subsubsection*{{Flavour anomalies}}\label{flavour_anomalies} Attempts to link dark matter to the apparently observed [[flavour anomalies]]: \begin{itemize}% \item Seungwon Baek, \emph{Scalar dark matter behind $b \to s \mu \mu$ anomaly} (\href{https://arxiv.org/abs/1901.04761}{arXiv:1901.04761}) \item D.G. Cerdeno, A. Cheek, P. Martin-Ramiro, J.M. Moreno, \emph{B anomalies and dark matter: a complex connection} (\href{https://arxiv.org/abs/1902.01789}{arXiv:1902.01789}) \end{itemize} [[!redirects cold dark matter]] [[!redirects core-cusp problem]] [[!redirects core-cusp problems]] [[!redirects cusp-core problem]] [[!redirects cusp-core problems]] [[!redirects cuspy halo problem]] [[!redirects cuspy halo problems]] [[!redirects missing satellite problem]] [[!redirects missing satellite problems]] [[!redirects dwarf galaxy problem]] [[!redirects dwarf galaxy problems]] \end{document}