\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{de Rham complex} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{for_smooth_manifolds}{For smooth manifolds}\dotfill \pageref*{for_smooth_manifolds} \linebreak \noindent\hyperlink{for_algebraic_objects}{For algebraic objects}\dotfill \pageref*{for_algebraic_objects} \linebreak \noindent\hyperlink{ForCohesiveHomotopyTypes}{For cohesive homotopy types}\dotfill \pageref*{ForCohesiveHomotopyTypes} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{de_rham_cohomology_of_spheres}{de Rham cohomology of spheres}\dotfill \pageref*{de_rham_cohomology_of_spheres} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{basic_theorems}{Basic theorems}\dotfill \pageref*{basic_theorems} \linebreak \noindent\hyperlink{relation_to_deligne_complex}{Relation to Deligne complex}\dotfill \pageref*{relation_to_deligne_complex} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{in_differential_geometry}{In differential geometry}\dotfill \pageref*{in_differential_geometry} \linebreak \noindent\hyperlink{in_algebraic_geometry}{In algebraic geometry}\dotfill \pageref*{in_algebraic_geometry} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{de Rham complex} (named after [[Georges de Rham]]) $\Omega^\bullet(X)$ of a [[space]] $X$ is the [[cochain complex]] that in degree $n$ has the [[differential form]]s (which may mean: [[Kähler differential form]]s) of degree $n$, and whose [[differential]] is the \textbf{de Rham differential} or \textbf{exterior derivative}. As $X$ varies this constitutes an [[abelian sheaf]] of complexes. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{for_smooth_manifolds}{}\subsubsection*{{For smooth manifolds}}\label{for_smooth_manifolds} The \textbf{de Rham complex} of a [[smooth manifold]] is the [[cochain complex]] which in degree $n \in \mathbb{N}$ has the [[vector space]] $\Omega^n(X)$ of degree-$n$ [[differential forms]] on $X$. The coboundary map is the deRham \emph{[[exterior derivative]]}. The [[chain cohomology|cohomology]] of the de Rham complex (hence the [[quotient]] of [[closed differential forms]] by [[exact differential forms]]) is \textbf{de Rham cohomology}. Under the [[wedge product]], the deRham complex becomes a [[differential graded algebra]]. This may be regarded as the [[Chevalley-Eilenberg algebra]] of the [[tangent Lie algebroid]] $T X$ of $X$. The corresponding [[abelian sheaf]] in this case defines a [[smooth spectrum]] via the [[stable Dold-Kan correspondence]], see at \emph{\href{smooth+spectrum#ExamplesDeRhamSpectra}{smooth spectrum -- Examples -- De Rham spectra}}. \hypertarget{for_algebraic_objects}{}\subsubsection*{{For algebraic objects}}\label{for_algebraic_objects} For [[smooth varieties]] $X$, algebraic de Rham cohomology is defined to be the [[hypercohomology]] of the de Rham complex $\Omega_X^\bullet$. De Rham cohomology has a rather subtle generalization for possibly singular algebraic varieties due to (\hyperlink{Grothendieck}{Grothendieck}). For [[analytic spaces]] \begin{itemize}% \item T. Bloom, M. Herrera, \emph{De Rham cohomology of an analytic space}, Inv. Math. \textbf{7} (1969), 275-296, \href{http://dx.doi.org/10.1007/BF01425536}{doi} \end{itemize} \hypertarget{ForCohesiveHomotopyTypes}{}\subsubsection*{{For cohesive homotopy types}}\label{ForCohesiveHomotopyTypes} In the general context of [[cohesive homotopy theory]] in a [[cohesive (∞,1)-topos]] $\mathbf{H}$, for $A \in \mathbf{H}$ a [[cohesive homotopy type]], then the [[homotopy fiber]] of the [[counit of a comonad|counit]] of the [[flat modality]] \begin{displaymath} \flat_{dR} A \coloneqq fib(\flat A \to A) \end{displaymath} may be interpreted as the de Rham complex with [[coefficients]] in $A$. This is the [[codomain]] for the [[Maurer-Cartan form]] $\theta_{\Omega A}$ on $\Omega A$ in this generality. The [[shape modality|shape]] of $\theta_{\Omega A}$ is the general [[Chern character]] on $\Pi(\Omega A)$. For more on this see at \begin{itemize}% \item \emph{\href{cohesive+%28infinity%2C1%29-topos+--+structures#deRhamCohomology}{structures in a cohesive infinity-topos -- de Rham cohomology}} \end{itemize} More precisely, $\flat_{dR} \Sigma A$ and $\Pi_{dR} \Omega A$ play the role of the non-negative degree and negative degree part, respectively of the de Rham complex with coefficients in $\Pi \flat_{dR} \Sigma A$. For more on this see at \begin{itemize}% \item \emph{\href{differential%20cohomology%20diagram#DeRhamCoefficients}{differential cohomology diagram -- de Rham coefficients}}. \end{itemize} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{de_rham_cohomology_of_spheres}{}\subsubsection*{{de Rham cohomology of spheres}}\label{de_rham_cohomology_of_spheres} \begin{prop} \label{}\hypertarget{}{} For positive $n$, the de Rham cohomology of the $n$-[[sphere]] $S^n$ is \begin{displaymath} H^p(S^n) = \left\{ \itexarray{ \mathbb{R} & if\; p = 0,n \\ 0 & otherwise } \right. \,. \end{displaymath} For $n=0$, we have \begin{displaymath} H^p(S^0) = \left\{ \itexarray{ \mathbb{R} \oplus \mathbb{R} & if\; p = 0 \\ 0 & otherwise } \right. \,. \end{displaymath} \end{prop} \begin{proof} This follows from the [[Mayer-Vietoris sequence]] associated to the open cover of $S^n$ by the subset excluding just the north pole and the subset excluding just the south pole, together with the fact that the dimension of the $0^{th}$ de Rham cohomology of a smooth manifold is its number of connected components. \end{proof} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{basic_theorems}{}\subsubsection*{{Basic theorems}}\label{basic_theorems} \begin{itemize}% \item [[Poincare lemma]] \item [[de Rham theorem]] \end{itemize} \hypertarget{relation_to_deligne_complex}{}\subsubsection*{{Relation to Deligne complex}}\label{relation_to_deligne_complex} See at \emph{[[Deligne complex]]} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[pullback of differential forms]] \item [[equivariant de Rham cohomology]] \item [[de Rham-Witt complex]] \item [[twisted de Rham cohomology]] \item [[Deligne cohomology]] \item [[de Rham space]] \item [[Lie algebra valued differential forms]] \item [[L-infinity algebra valued differential forms]] \item [[absolute de Rham cohomology]] \item [[Dolbeault complex]], [[Dolbeault cohomology]] \item [[holomorphic de Rham complex]] \item [[Hodge-de Rham spectral sequence]] \item [[chiral de Rham complex]] \item [[crystalline cohomology]], [[comparison theorem (crystalline cohomology)]] \item [[Hodge cohomology]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{in_differential_geometry}{}\subsubsection*{{In differential geometry}}\label{in_differential_geometry} (\ldots{}) \hypertarget{in_algebraic_geometry}{}\subsubsection*{{In algebraic geometry}}\label{in_algebraic_geometry} A useful introduction is \begin{itemize}% \item Kiran Kedlaya, \emph{$p$-adic cohomology, from theory to practice} (\href{http://swc.math.arizona.edu/aws/2007/KedlayaNotes11Mar.pdf}{pdf}) \end{itemize} A classical reference on the algebraic version is \begin{itemize}% \item [[Alexander Grothendieck]], \emph{On the De Rham cohomology of algebraic varieties}, Publications Math\'e{}matiques de l'IH\'E{}S \textbf{29}, 351-359 (1966), \href{http://www.numdam.org/item?id=PMIHES_1966__29__95_0}{numdam}. \end{itemize} \begin{itemize}% \item A. Grothendieck, \emph{Crystals and the de Rham cohomology of schemes}, in Giraud, Jean; Grothendieck, Alexander; Kleiman, Steven L. et al., Dix Expos\'e{}s sur la Cohomologie des Sch\'e{}mas, Advanced studies in pure mathematics \textbf{3}, Amsterdam: North-Holland, pp. 306--358, \href{http://www.ams.org/mathscinet-getitem?mr=0269663}{MR0269663}, \href{http://www.math.jussieu.fr/~leila/grothendieckcircle/DixExp.pdf}{pdf} \item [[Robin Hartshorne]], \emph{On the de Rham cohomology of algebraic varieties}, Publ. Math\'e{}matiques de l'IH\'E{}S \textbf{45} (1975), p. 5-99 \href{http://www.ams.org/mathscinet-getitem?mr=55:5633}{MR55\#5633} \item P. Monsky, \emph{Finiteness of de Rham cohomology}, Amer. J. Math. \textbf{94} (1972), 237--245, \href{http://www.ams.org/mathscinet-getitem?mr=301017}{MR301017}, \href{http://dx.doi.org/10.2307/2373603}{doi} \end{itemize} See also \begin{itemize}% \item Yves Andr\'e{}, \emph{Comparison theorems between algebraic and analytic De Rham cohomology} (\href{http://www.emis.de/journals/JTNB/2004-2/pages335-355.pdf}{pdf}) \item [[Mikhail Kapranov]], \emph{DG-Modules and vanishing cycles} ([[KapranovDGModuleVanishingCycle.pdf:file]]) \end{itemize} [[!redirects deRham complex]] [[!redirects deRham algebra]] [[!redirects de Rham algebra]] [[!redirects deRham dga]] [[!redirects de Rham dga]] [[!redirects deRham dg-algebra]] [[!redirects de Rham dg-algebra]] [[!redirects de Rham cohomology]] [[!redirects deRham cohomology]] [[!redirects de Rham complex]] [[!redirects de Rham complexes]] \end{document}