\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{decalage} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{DefinitionInComponents}{In components}\dotfill \pageref*{DefinitionInComponents} \linebreak \noindent\hyperlink{AsARestrictionOfTotalDecalage}{As a restriction of total d\'e{}calage}\dotfill \pageref*{AsARestrictionOfTotalDecalage} \linebreak \noindent\hyperlink{DefinitionInTermsOfCones}{In terms of cones}\dotfill \pageref*{DefinitionInTermsOfCones} \linebreak \noindent\hyperlink{MorphismsOutOfIt}{Morphisms out of the d\'e{}calage}\dotfill \pageref*{MorphismsOutOfIt} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{FibrationResolution}{Fibration resolution}\dotfill \pageref*{FibrationResolution} \linebreak \noindent\hyperlink{DecalageComonad}{D\'e{}calage comonad}\dotfill \pageref*{DecalageComonad} \linebreak \noindent\hyperlink{total_dcalage}{Total D\'e{}calage}\dotfill \pageref*{total_dcalage} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{for_simplicial_groups}{For simplicial groups}\dotfill \pageref*{for_simplicial_groups} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} If you take a simplicial set and `throw away' the last face and degeneracy, and relabel, shifting everything down one `notch', you get a new simplicial set. This is what is called the \emph{d\'e{}calage} of a [[simplicial set]]. It is a model for the [[path space object]] of $X$, --or rather: the union of all based path space objects for all basepoints $x \in X_0$ -- similar to, but a little smaller than, the model $X^I \times_X X_0$, which is discussed for instance at \emph{[[factorization lemma]]}: In the latter case an $n$-cell in the path space is a morphism to $X$ from the simplicial cone over the $n$-simplex modeled as the [[pushout]] $(\Delta[n] \times \Delta[1]) \coprod_{\Delta[n]} \Delta[0]$. This is the simplicial set obtained by forming the simplicial cylinder over $\Delta[n]$ and then contracting one end to the point. Contrary to that, an $n$-simplex in the d\'e{}calage of $X$ is a morphism to $X$ from the cone over $\Delta[n]$ modeled simply by the [[join of simplicial sets]] $\Delta[n] \star \Delta[0]$. This is a much smaller model for the cone. In fact $\Delta[n]\star \Delta[0] = \Delta[n+1]$ is just the $(n+1)$-simplex. On the other hand, the above pushout-construction produces simplicial sets with many $(n+1)$-simplices, the one that one ``expects'', but glued to others with some degenerate edges. Accordingly, there is, for $n \geq 1$, a proper inclusion \begin{displaymath} \Delta[n] \star \Delta[1] \hookrightarrow (\Delta[n] \times \Delta[1]) \coprod_{\Delta[n]} \Delta[0] \,. \end{displaymath} As a result, the d\'e{}calage construction is often more convenient than forming $X^I \times_X X_0$. A central application is the special case where $X = \bar W G$ is the simplicial delooping of a [[simplicial group]] $G$ (see at \emph{[[simplicial principal bundle]]}). In this case $Dec_0 \bar W G$, called $W G$, is a standard model for the \emph{\href{simplicial%20principal%20bundle#UniversalSimplicialBundle}{universal simplicial principal bundle}}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The plain definition of the d\'e{}calage of a simplicial set is very simple, stated below in \begin{itemize}% \item \emph{\hyperlink{DefinitionInComponents}{In components}} \end{itemize} However, in order to appreciate and handle this definition, it is useful to understand it as a special case of total d\'e{}calage, stated below in \begin{itemize}% \item \emph{\hyperlink{AsARestrictionOfTotalDecalage}{As a restriction of total d\'e{}calage}} . \end{itemize} From this one sees more manifestly that the d\'e{}calage of a simplicial set is built from cones in the original simplicial set. This we discuss below in \begin{itemize}% \item \emph{\hyperlink{DefinitionInTermsOfCones}{In terms of cones}}. \end{itemize} In this last formulation it is clearest what the two canonical morphisms out of the d\'e{}calage of a simplicial set mean. These we define in \begin{itemize}% \item \emph{\hyperlink{MorphismsOutOfIt}{Morphisms out of d\'e{}calage}}. \end{itemize} \hypertarget{DefinitionInComponents}{}\subsubsection*{{In components}}\label{DefinitionInComponents} Concretely, the d\'e{}calage construction is the following. \begin{defn} \label{}\hypertarget{}{} For $X$ a [[simplicial set]], the \textbf{d\'e{}calage} $Dec_0\, X \in sSet$ of $X$, is the simplicial set obtained by shifting every dimension down by one, `forgetting' the last face and degeneracy of $X$ in each dimension: \begin{itemize}% \item $(Dec_0 \, X)_n := X_{n+1}$; \item $d_k^{n,Dec_0 X} := d^{n+1,X}_{k}$; \item $s_k^{n,Dec_0 X} := s^{n+1,X}_{k}$. \end{itemize} \end{defn} \hypertarget{AsARestrictionOfTotalDecalage}{}\subsubsection*{{As a restriction of total d\'e{}calage}}\label{AsARestrictionOfTotalDecalage} It is often useful to understand this as a special case of the \emph{[[total décalage]]} construction: \begin{defn} \label{}\hypertarget{}{} Write $\sigma : \Delta_a \times \Delta_a \to \Delta_a$ for the [[ordinal sum]] operation on the [[asSet|augmented simplex category]]. The [[total décalage]] functor is precompositon with this \begin{displaymath} \sigma^* : sSet_a \to ssSet_a \end{displaymath} or rather its restriction from [[augmented simplicial sets]] to just [[simplicial sets]]/[[bisimplicial sets]]. \begin{displaymath} \sigma^* : sSet \to ssSet \,. \end{displaymath} In terms of this the plain [[décalage]] is the functor induced from the restriction $\sigma(-,[0]) : \Delta \to \Delta$, of [[ordinal sum]] with $0$, i.e. \begin{displaymath} Dec_0 X := (\sigma(-,[0]))^* X \,. \end{displaymath} \end{defn} \hypertarget{DefinitionInTermsOfCones}{}\subsubsection*{{In terms of cones}}\label{DefinitionInTermsOfCones} The perspective from total d\'e{}calage makes fairly manifest that d\'e{}calage forms [[cones]] in $X$, as we discuss now. To this end, notice the relation of [[total décalage]] to [[join of simplicial sets]]: \begin{defn} \label{}\hypertarget{}{} Write \begin{displaymath} \Box : sSet \times sSet \to ssSet \end{displaymath} for the \emph{box product functor} that takes $X,Y \in sSet$ to the [[bisimplicial set]] \begin{displaymath} (X \Box Y) : ([k],[l]) \mapsto X_k \times X_l \,. \end{displaymath} \end{defn} \begin{lemma} \label{}\hypertarget{}{} If $X, Y \in$ [[sSet]] are connected, then their [[join of simplicial sets]] $X \star Y$ is expressed by the [[left adjoint]] to [[total décalage]] as \begin{displaymath} \sigma_!(X \Box Y) = X \star Y \,. \end{displaymath} \end{lemma} This appears as (\hyperlink{Stevenson12}{Stevenson 12, lemma 2.1}). It follows that the left adjoint of plain d\'e{}calage forms joins with the 0-simplex: \begin{cor} \label{}\hypertarget{}{} The [[left adjoint]] to $Dec_0 : sSet \to sSet$ is \begin{displaymath} C := \sigma_!((-) \Box \Delta[0]) \,. \end{displaymath} In particular for $S \in sSet$ connected we have \begin{displaymath} C(S) = S \star \Delta[0] \,. \end{displaymath} \end{cor} This appears as (\hyperlink{Stevenson12}{Stevenson 12, cor. 2.1}). \begin{remark} \label{}\hypertarget{}{} The [[join of simplicial sets]] with the 0-simplex $X \star \Delta[0]$ forms a simplicial model for the [[cone]] over $X$. \end{remark} \begin{cor} \label{InTermsOfCones}\hypertarget{InTermsOfCones}{} By [[adjunction]] we have for all $n \in \mathbb{N}$ \begin{displaymath} (Dec_0 X)_n = Hom_{sSet}( \Delta[n] \star \Delta[0], X) \,. \end{displaymath} \end{cor} So this exhibits the $n$-cells of $Dec_0 X$ as being the cones of $n$-simplices in $X$. \hypertarget{MorphismsOutOfIt}{}\subsubsection*{{Morphisms out of the d\'e{}calage}}\label{MorphismsOutOfIt} \begin{prop} \label{TheCanonicalMorphisms}\hypertarget{TheCanonicalMorphisms}{} For $X \in sSet$ its d\'e{}calage $Dec_0 X$ comes with two canonical morphisms out of it \begin{displaymath} \itexarray{ Dec_0 X &\to& X \\ \downarrow^{\mathrlap{\simeq}} \\ const X_0 } \,. \end{displaymath} Here in terms of the description \hyperlink{DefinitionInTermsOfCones}{above} of d\'e{}calage by cones: \begin{itemize}% \item the horizontal morphism is induced from the canonical inclusion $\Delta[n] \hookrightarrow \Delta[n]\star \Delta[0]$; \item the vertical morphism is given by the canonical inclusion $\Delta[0] \hookrightarrow \Delta[n]\star \Delta[0]$. \end{itemize} Or in terms of components, as discussed \hyperlink{DefinitionInComponents}{above}, \begin{itemize}% \item the horizontal morphism is given by $d_{last} : Dec_0 Y \to Y$, hence in degree $n$ by the remaining face map $d_{n+1} : X_{n+1} \to X_n$; \item the vertical morphism is given in degree 0 by $s_0 : X_1 \to X_0$ and in every higher degree similarly by $s_0 \circ s_0 \circ \cdots \circ s_0$. \end{itemize} \end{prop} See for instance (\hyperlink{Stevenson11}{Stevenson, around def. 2}) for an account. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{FibrationResolution}{}\subsubsection*{{Fibration resolution}}\label{FibrationResolution} We discuss here how $Dec_0 X \to X$ is a [[resolution]] of $const X_0 \to X$ by a [[Kan fibration]]. \begin{prop} \label{}\hypertarget{}{} For $X$ a simplicial set, the two morphisms from prop. \ref{TheCanonicalMorphisms} have the following properties. \begin{itemize}% \item the morphism $d_0 : Dec_0 X \to const X_0$ is a [[weak homotopy equivalence]], in fact a [[deformation retract]]; a weak inverse is given by the morphism which in degree 0 is the degeneracy $s_0 : X_0 \to X_1$, and so on. \end{itemize} If $X$ is a [[Kan complex]], then \begin{itemize}% \item the morphism $d_{last} : Dec_0 X \to X$ is a [[Kan fibration]]; \end{itemize} \end{prop} \begin{proof} The first statement is classical, it appears for instance as (\hyperlink{Stevenson11}{Stevenson 11, lemma 5}). For the second, notice that by remark \ref{InTermsOfCones} the lifting problem \begin{displaymath} \itexarray{ \Lambda^n[n] &\to& Dec_0 X \\ \downarrow && \downarrow \\ \Delta[n] &\to& X } \end{displaymath} is equivalent to the lifting problem \begin{displaymath} \itexarray{ (\Lambda^n[n] \star \Delta[0]) \coprod_{\Lambda^i[n]} \Delta[n] &\to& X \\ \downarrow && \downarrow \\ \Delta[n] \star \Delta[0] &\to& * } \,. \end{displaymath} Here the left morphism is an [[anodyne morphism]], in fact is an $(n+1)$-[[horn]] inclusion $\Lambda[n+1] \to \Delta[n+1]$. So a lift exists if $X$ is a [[Kan complex]]. \end{proof} \begin{remark} \label{}\hypertarget{}{} By the above, $Dec_0 X$ is the [[disjoint union]] of [[over quasi-categories]] \begin{displaymath} Dec_0 X = \coprod_{x \in X_0} X_{/x} \,. \end{displaymath} For each of these the statement that the projection $X_{/x} \to X$ is a [[Kan fibration]] if $X$ is a [[Kan complex]], and moreover that it is a a [[right fibration]] if $X$ is a [[quasi-category]], is (\hyperlink{Joyal}{Joyal, theorem 3.19}), reproduced also as ([[Higher Topos Theory|HTT, prop. 2.1.2.1]]). Notice that left/right fibrations into a Kan complex are automatically Kan fibrations (by the discussion at \emph{\href{right%2Fleft+Kan+fibration#AsFibrationsInInfinityGroupoids}{Left fibration in ∞-groupoids}}). \end{remark} \begin{cor} \label{}\hypertarget{}{} For $X$ a [[Kan complex]], the d\'e{}calage morphism $Dec_0 X \to X$ is a [[Kan fibration]] [[resolution]] of the inclusion $const X_0 \to X$ of the set of 0-cells of $X$, regarded as a [[discrete object|discrete]] simplicial set: there is a diagram \begin{displaymath} \itexarray{ const X_0 &\stackrel{\simeq}{\to}& Dec_0 X \\ \downarrow && \downarrow \\ X &\to& X } \,, \end{displaymath} where \begin{itemize}% \item the top morphism \begin{itemize}% \item is given in degree $n$ by the $n$-fold degeneracy map $s_0 \circ s_0 \circ \cdots s_0$; \item is a [[weak homotopy equivalence]]; \end{itemize} \item the right vertical morphism \begin{itemize}% \item is given in degree $n$ by $d_{n+1} : X_{n+1} \to X_n$ \item is a [[Kan fibration]]. \end{itemize} \end{itemize} \end{cor} \begin{remark} \label{}\hypertarget{}{} The inclusion $const X_0 \to X$ presents a canonical [[effective epimorphism in an (∞,1)-category]] in [[∞Grpd]] into $X$, out of a [[0-truncated]] object. By the above, the d\'e{}calage is a natural fibration resolution of this canonical ``[[atlas]]''. This is useful for instance in the discussion of [[homotopy pullbacks]] of this effective epimorphism: by the discussion there the homotopy pullback of $const X_0 \to X$ along any morphism $f : A \to X$ is presented by the ordinary pullback of any Kan fibration resolution, hence in particular of the d\'e{}calage projection: \begin{displaymath} f^* Dec_0 X \simeq A \times_X^{h} const X_0 \,. \end{displaymath} \end{remark} \hypertarget{DecalageComonad}{}\subsubsection*{{D\'e{}calage comonad}}\label{DecalageComonad} D\'e{}calage also has an abstract [[category theory|category theoretic]] description as follows. The [[simplex category]], as a [[monoidal category]] $(\Delta, +, 0)$ equipped with the [[monoid]] $1$, is the ``[[walking structure|walking]] [[monoid]]'', i.e., is initial among monoidal categories equipped with a monoid. Therefore $\Delta^{op}$ is the walking [[comonoid]]; as a result, there is a [[comonad]] \begin{displaymath} - + 1: \Delta^{op} \to \Delta^{op} \end{displaymath} which induces a comonad on simplicial sets whose underlying functor is precisely d\'e{}calage: \begin{displaymath} Dec: Set^{\Delta^{op}} \to Set^{\Delta^{op}} \end{displaymath} The map $d_{last}: Dec_0 \to Id$ is the counit of this comonad. The comonad itself is analogous to a kind of unbased [[path space object]] comonad $P$ on $Top$ whose value at a space $X$ is a pullback \begin{displaymath} \itexarray{ P X & \to & X^I \\ \downarrow & & \downarrow eval_0 \\ |X| & \stackrel{i}{\to} & X } \end{displaymath} where $i$ is the set-theoretic identity inclusion of $X$ equipped with the discrete topology. Thus we have \begin{displaymath} P X = \sum_{x_0 \in X} P(X, x_0), \end{displaymath} the sum over all possible basepoints $x_0$ of path spaces based at $x_0$. The analogy is made precise by a canonical isomorphism \begin{displaymath} Dec_0 \circ S \cong S \circ P \end{displaymath} where $S: Top \to Set^{\Delta^{op}}$ is simplicial singularization. A $P$-coalgebra partitions $X$ into path components and exhibits contractibility of each component. Similarly, a coalgebra of the decelage comonad exhibits the acyclicity of the underlying simplicial set. \hypertarget{total_dcalage}{}\paragraph*{{Total D\'e{}calage}}\label{total_dcalage} Using either the simplicial [[comonadic resolution]] generated by the above comonad or directly using [[ordinal sum]], we get a [[bisimplicial set]] known as the [[total decalage|total décalage]] of $Y$. See there for more details. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{for_simplicial_groups}{}\subsubsection*{{For simplicial groups}}\label{for_simplicial_groups} The case of $Dec_0 G$ for $G$ a [[simplicial group]] is important in the simplicial theory of algebraic models for [[homotopy n-types]]. In this case the morphism $d_{last} : Dec_0\, G \to G$, is an [[epimorphism]]. Taking the [[kernel]] of this and then applying $\pi_0$, yields a [[crossed module]] constructed from the [[Moore complex]] of $G$ \begin{displaymath} N G_1/d_2(NG_2)\to N G_0, \end{displaymath} which has kernel $\pi_1(G)$ and cokernel $\pi_0(G)$. This crossed module represents the [[homotopy 2-type]] of $G$. Applying the d\'e{}calage twice leads to a [[crossed square]] which represents the 3-type of $G$, \ldots{} and so on. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[bar construction]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Original sources are \begin{itemize}% \item [[Luc Illusie]], \emph{Complexe cotangent et d\'e{}formations I}, volume 239 of Lecture Notes in Maths , Springer-Verlag. and 1972, \emph{Complexe cotangent et d\'e{}formations II}, volume 283 of Lecture Notes in Maths , Springer-Verlag (1971) \end{itemize} and \begin{itemize}% \item [[John Duskin]], \emph{Simplicial methods and the interpretation of ``triple'' cohomology}, number 163 in Mem. Amer. Math. Soc., 3, Amer. Math. Soc (1975) \end{itemize} The notion of d\'e{}calage has been widely used since the paper introducing the method of [[cohomological descent]] in [[Hodge theory]]: \begin{itemize}% \item [[Pierre Deligne]], \emph{Th\'e{}orie de Hodge. III}, Inst. Hautes \'E{}tudes Sci. Publ. Math. \textbf{44} (1974), 5--77. \end{itemize} Reviews are in \begin{itemize}% \item [[Phil Ehlers]], \emph{Algebraic Homotopy in Simplicially Enriched Groupoids}, 1993, University of Wales Bangor, (pdf [[Ehlers-thesis.pdf|here:file]]) \end{itemize} The link with simplicial groups and algebraic models of homotopy $n$-types is given in \begin{itemize}% \item [[Tim Porter]], \emph{n-types of simplicial groups and crossed n-cubes}, Topology, 32, (1993), 5--24. \item [[Tim Porter]], \emph{[[Menagerie|The crossed menagerie]]} \end{itemize} A detailed account of various technical aspects is in \begin{itemize}% \item [[Danny Stevenson]], \emph{D\'e{}calage and Kan's simplicial loop group functor} (\href{http://arxiv.org/abs/1112.0474}{arXiv:1112.0474}) \end{itemize} and in section 2.2 of \begin{itemize}% \item [[Danny Stevenson]], \emph{Classifying theory for simplicial parametrized groups} (\href{http://arxiv.org/abs/1203.2461}{arXiv:1203.2461}) \end{itemize} Closely related technical results are in section 3 of \begin{itemize}% \item [[André Joyal]], \emph{The theory of quasi-categories and its applications} , lectures at CRM Barcelona (2008) \end{itemize} An application in the theory of [[stacks]] is discussed in \begin{itemize}% \item [[Anders Kock]], \emph{The stack quotient of a groupoid}, Cahiers de Topologie et G\'e{}om\'e{}trie Diff\'e{}rentielle Cat\'e{}goriques, \textbf{44} no. 2 (2003), p. 85--104 \href{http://www.numdam.org/item?id=CTGDC_2003__44_2_85_0}{numdam} \end{itemize} [[!redirects decalage]] [[!redirects décalage]] \end{document}