\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{decorated cospan} [[!redirects decorated cospans]] \hypertarget{decorated_cospan}{}\section*{{Decorated cospan}}\label{decorated_cospan} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{categories_of_cospans}{Categories of cospans}\dotfill \pageref*{categories_of_cospans} \linebreak \noindent\hyperlink{categories_of_decorated_cospans}{Categories of decorated cospans}\dotfill \pageref*{categories_of_decorated_cospans} \linebreak \noindent\hyperlink{the_monoidal_and_hypergraph_structures}{The monoidal and hypergraph structures}\dotfill \pageref*{the_monoidal_and_hypergraph_structures} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Decorated cospans are a convenient formalism to deal with open networks, i.e. networks were some nodes are interpreted to be `inputs' and some other to be `outputs'. In fact, a natural way to do such labelling is to specify some function assigning the set of inputs to those nodes in the network tasked with receiving them, and analogously, a function assigning to outputs those nodes which provide them. This is, morally, a [[cospan]]: the network is the vertex, and inputs and outputs are the feet. However, the two things sit in `different categories': e.g., inputs and outputs may be sets of wires and sockets, while the network has a more complicated description. Nevertheless, the network is just a set of nodes with more information attached, namely the way those nodes are connected. The key insight here is that to specify inputs/outputs of the network, we don't really care about this additional information. Hence we can use a `cospan of nodes' (formally, a cospan in [[FinSet]]), and deal with the network structure later, as a \emph{decoration}. Surprisingly, this formalism naturally captures also other operations such as sequential and parallel composition of networks. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{categories_of_cospans}{}\subsubsection*{{Categories of cospans}}\label{categories_of_cospans} In a category $\mathbf C$ with finite colimits (or even just [[pushout|pushouts]]) [[cospans]] can be composed in a natural way. In fact, given $x \to s \leftarrow y$ and $y \to t \leftarrow z$, we get a new cospan $x \to p \leftarrow z$ by taking a pushout in the middle: \begin{displaymath} \itexarray{ &&&& s +_y t \\& && {}^{p_s}\nearrow && \nwarrow^{p_t} \\ && s &&&& t \\ & {}^{f}\nearrow && \nwarrow^{g} & & {}^{h}\nearrow && \nwarrow^{i} \\ x &&&& y &&&& z } \end{displaymath} Therefore cospans form a compositional structure: a category $\mathrm{Cospan}(\mathbf C)$ where objects are the same of $\mathbf C$ but morphisms from $x$ to $y$ are replaced by cospans with feet $x$ and $y$. Since the pushout we choose to form the composite of two cospans is, in general, unique only up to unique isomorphism, we actually need to define a $2$-category. Morphisms of cospans $(x \to p \leftarrow y) \Rightarrow (x \to q \leftarrow y)$ are given by any $\mathbf C$-morphism $\eta : p \to q$ making the following commute \begin{displaymath} \itexarray{ && p \\ & {}^{f}\nearrow && \nwarrow^{g} \\ x &&\downarrow^\eta&& z \\ & {}_{f'}\searrow && \swarrow_{g'} \\ && q } \end{displaymath} It is also customary to ignore the $2$-structure and simply work with $\mathrm{Cospan}(\mathbf C)$ as a $1$-category whose morphisms are \emph{isomorphism classes} of cospans. \hypertarget{categories_of_decorated_cospans}{}\subsubsection*{{Categories of decorated cospans}}\label{categories_of_decorated_cospans} \begin{udefn} (\hyperlink{BrendanFong2015}{B. Fong 2015}) Let $\mathbf C$ be a [[finitely cocomplete category|category with finite colimits]], and \begin{displaymath} (F, \phi): (\mathbf C, +) \to (\mathbf D, \otimes) \end{displaymath} be a [[lax monoidal functor]]. A \textbf{decorated cospan}, or more precisely an \textbf{$F$-decorated cospan}, is a pair $(x \overset{i}\to n \overset{o}\leftarrow y,\, 1 \overset{s}\to Fn)$. We shall call the element $1 \overset{s}\to Fn$ the \textbf{decoration} of the decorated cospan. A morphism of decorated cospans \begin{displaymath} f : (x \overset{i}\to n \overset{o}\leftarrow y,\, 1 \overset{s}\to Fn) \to (x \overset{i}\to n' \overset{o}\leftarrow y,\, 1 \overset{s'}\to Fn') \end{displaymath} is a morphism of cospans such that the following commutes: \begin{displaymath} \itexarray{ && Fn\\ & \nearrow^s\\ 1 & & \downarrow^{Ff}\\ & \searrow^{s'}\\ && Fn' } \end{displaymath} \end{udefn} \begin{udef} Given a cospan $x \to n \leftarrow y$ in $\mathbf C$, the \textbf{empty decoration on $n$} is the unique map \begin{displaymath} 1 \overset{\phi_1}\longrightarrow F\varnothing \overset{F!}\longrightarrow Fn \end{displaymath} where $\varnothing$ is [[initial object|inital]] in $\mathbf C$ and $!$ denotes the universal morphism from such object. \end{udef} \begin{prop} \label{}\hypertarget{}{} (\hyperlink{BrendanFong2015}{B. Fong 2015}) There is a category $F\mathrm{Cospan}$ of $F$-decorated cospans, with objects the objects of $\mathbf C$ and morphisms isomorphism classes od $F$-decorated cospans. Composition in this category is given by the class of the pushout of two representatives: \begin{displaymath} \itexarray{ &&&& n +_y m \\& && {}^{j_n}\nearrow && \nwarrow^{j_m} \\ && n &&&& m \\ & {}^{i_x}\nearrow && \nwarrow^{o_y} & & {}^{i_y}\nearrow && \nwarrow^{o_z} \\ x &&&& y &&&& z } \end{displaymath} along with the decoration \begin{displaymath} 1 \overset{\lambda^{-1}}\longrightarrow 1 \otimes 1 \overset{s \otimes s'}\longrightarrow Fn \otimes Fm \overset{\phi_{n,m}}\longrightarrow F(n+m) \overset{F[j_n,j_m]}\longrightarrow F(n +_y m). \end{displaymath} where $1 \overset{s}\to Fn$ and $1 \overset{s'}\to Fn$ are decorations of the first and second cospan, respectively. \end{prop} \begin{proof} The identity morphism of an object $x$ in $F\mathrm{Cospan}$ is simply $x \overset{\mathrm{id}}\to x \overset{\mathrm{id}}\leftarrow x$ equipped with the empty decoration on $x$. The check that all relevant axioms are satisfied can be found in (\hyperlink{BrendanFong2015}{B. Fong 2015, Appendix A}) \end{proof} \begin{uremark} The composition of decorations is the key construction of the decorated cospans formalisms. In fact, returning to the analogy with open networks, it constructs the composite network of a given `link' of two networks. Hence the compositional structures of the cospans is leveraged to describe the compositional structure of a richer structure. \end{uremark} \begin{uremark} Notice that the empty decoration gives a canonical way to decorate any cospan on $\mathbf C$. Indeed, it can be shown this defines a wide functor $\mathrm{Cospan}(\mathbf C) \embedsin F\mathrm{Cospan}$, as the composition of two empty-decorated cospans is again empty-decorated. \end{uremark} \hypertarget{the_monoidal_and_hypergraph_structures}{}\subsubsection*{{The monoidal and hypergraph structures}}\label{the_monoidal_and_hypergraph_structures} In the presence of a braiding on $\mathbf D$ (the `decorating category'), the category of decorated cospans becomes not just [[symmetric monoidal category|symmetric monoidal]], but a full-blown [[hypergraph category]]. \begin{theorem} \label{}\hypertarget{}{} (\hyperlink{BrendanFong2015}{B. Fong, 2015}) Let $\mathbf C$ be a category with finite colimts, $(\mathbf D, \otimes)$ a [[braided monoidal category]] and $(F, \phi) : (\mathbf C, +) \to (\mathbf D, \otimes)$ a lax braided monoidal functor. Then we may equip $F\mathrm{Cospan}$ with a symmetric monoidal and hypergraph structure, such that there is a [[wide subcategory|wide embedding]] of hypergraph categories \begin{displaymath} \mathrm{Cospan}(\mathbf C) \embedsin F\mathrm{Cospan}. \end{displaymath} \end{theorem} \begin{proof} We define the monoidal product of objects $x$ and $y$ of $F\mathrm{Cospan}$ to be their coproduct $x+y$ in $\mathbf C$, and defined the monoidal product of decorated cospans $(x \overset{i}\to n \overset{o}\leftarrow y, 1 \overset{s}\to Fn)$ and $(x \overset{i}\to n' \overset{o}\leftarrow y, 1 \overset{s'}\to Fn')$ to be \begin{displaymath} \itexarray{ && n + n' \\ & {}^{i_x + i_{x'}}\nearrow && \nwarrow^{o_y + o_{y'}} &&,&& 1 \overset{\lambda^{-1}}\longrightarrow 1 \otimes 1 \overset{s \otimes s'}\longrightarrow Fn \otimes Fn' \overset{\phi_{n,n'}}\longrightarrow F(n+n') \\ x+x' &&&& y+y' } \end{displaymath} The braiding in $\mathbf D$ can be now used to show this product is indeed functorial. Finally, we choose associator, unitors and braiding to be the images of those in $\mathrm{Cospan}(\mathbf C)$. The necessary checks are done in (\hyperlink{BrendanFong2015}{B. Fong 2015, Appendix A}). The hypergraph structure is defined by equipping each object $x \in F\mathrm{Cospan}$ with the image of the special commutative [[Frobenius algebra|Frobenius monoid]] specified by the hypergraph structure of $\mathrm{Cospan}(\mathbf C)$. The fact that the `empty-decoration' embedding is an hypergraph functor is evident. \end{proof} If the monoidal unit of $(\mathbf D, \otimes)$ is the inital object, then each object admits only a decoration --- the empty one. This implies $\mathrm{Cospan}(\mathbf C)$ and $1_{\mathbf C}\mathrm{Cospan}$ are isomorphic as hypergraph categories. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[cospan]] \item [[structured cospan]] \item [[hypergraph category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Decorated cospans were first defined by Brendan Fong: \begin{itemize}% \item [[Brendan Fong]], \emph{Decorated Cospans}, (\href{http://arxiv.org/abs/1502.00872}{arXiv:1502.00872}). \end{itemize} \end{document}