\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{definable set} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_theory}{}\paragraph*{{Model theory}}\label{model_theory} [[!include model theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{ind_and_prodefinable_sets}{Ind- and pro-definable sets}\dotfill \pageref*{ind_and_prodefinable_sets} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[definable set]] of an $\mathcal{L}$-theory $T$ in a [[first-order language]] is an [[equivalence class]] of [[formulas]] which evaluate the same way in every model of $T$. (In the case that $T$ is empty, $\mathbf{Mod}(T)$ is just the class of $\mathcal{L}$-structures.) \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $L$ be a first-order language and $T$ a theory in $L$. Any formula $\phi(x_1,\ldots,x_n)$, whose only free variables could be among $x_1,\ldots,x_n$, together with a [[model]] $M$ for $T$ evaluates to a truth value on each $a = (a_1,\ldots,a_n)\in M^n$, hence it determines the subset $\phi(M)\subset M^n$ of all $a$ such that $\phi(a)$. Two formulas $\phi,\psi$ with the same number of free variables are equivalent if $\phi(M) = \psi(M)$ for every model $M$ of $T$. A \textbf{definable set} $X$ in $T$ is an equivalence class of formulas in $L$ under this relation. Consider the category $\mathcal{M}_{el}(L)$ of $L$-[[structure in model theory|structures]] and [[elementary embedding|elementary embeddings]] and its full subcategory $\mathcal{M}_{el}(T)$ whose objects are the models of $T$. We can also view a \textbf{definable set} for a theory $T$ as a [[functor]] $\mathcal{M}_{el}(T)\to Set$ which is of the form $M\mapsto\phi(M)$ for some $L$-formula $\phi$. By $X(M)$ denote the set of all $a\in M$ such that $X(a)$ holds, i.e. $\phi(a)$ is true for any choice of representative $\phi\in X$. Given two definable sets $X,Y$ in $T$ a \textbf{definable function} $f: X\to Y$ is a definable subset of the product sort $X\times Y$ such that $f_M\in X(M)\times Y(M)$ is a function (we also write $f_M : X(M)\to Y(M)$) for every model $M$ of $T$. Analogously a \textbf{definable equivalence relation} is a definable subset $R\subset X\times X$ such that $R(M)$ is an equivalence relation for every model $M$ of $T$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \textbf{Proposition.} Given a small category $\mathcal{M}$ and two functors $F,G:\mathcal{M}\to Set$ the natural transformations $\alpha : F\to G$ are in 1-1 correspondence with functors $\tilde\alpha : \mathcal{M}\to Set$ such that $\tilde\alpha(A) \subset F(A)\times G(A)$ and such that $\tilde\alpha(A)$ is a functional relation. Proof. If $\alpha:F\to G$ is an $Ob(\mathcal{M})$-indexed family with components $\alpha_A: F(A)\to G(A)$ viewed as functional relations $\tilde\alpha_A\subset F(A)\times G(A)$, then the extension to a functor means\newline that there is a (automatically unique) dotted arrow $\tilde\alpha_f$ \begin{displaymath} \itexarray{ \tilde\alpha_A & \stackrel{\tilde\alpha_f}\hookrightarrow & \tilde\alpha_B\\ \downarrow && \downarrow \\ F(A)\times G(A)&\stackrel{F(f)\times G(f)}\longrightarrow & F(B)\times G(B) } \end{displaymath} making the diagram commutative (once the existence of $\tilde\alpha_f$ is known, the functoriality of $\tilde\alpha_{f\circ g} = \tilde\alpha_f\circ\tilde\alpha_g$ comes by uniqueness of $\tilde\alpha_f$ and the functoriality of $F\times G$ which it restricts from). That means that for every $x\in F(A)$ $(x,\alpha_A(x))$ should be sent to $(F(f)(x), G(f)(\alpha_A(x)))$ by $\tilde\alpha_f$, what is a restriction of $F(f)\times G(f)$, but by $\alpha_B$ being \emph{functional} relation this must be the same as $(F(f)(x), \alpha_B(F(f)(x)))$, i.e. that $G(f)(\alpha_A(x))=\alpha_B(F(f)(x))$. Q.E.D. In other words, functoriality of $\tilde\alpha$ is the same as $\alpha$ being natural. \textbf{Corollary.} Definable functions for $L$ (for $T$) are in 1-1 correspondence with natural transformations of \textbf{definable sets} as functors $\mathcal{M}_{el}(L)\to Set$ (resp. $\mathcal{M}_{el}(T)\to Set$). For a fixed (multi-sorted, first-order) theory $T$, definable sets and definable functions form a category $Def(T)$. This category (or any equivalent category) is the [[syntactic category]] of the theory. Models of $T$ can be recovered as left exact functors $Def(T)\to Set$. Notice that definable sets are functors from models to sets, and models are functors definable sets to sets; just the latter are the ``evaluation functionals'' among all functors. See also [[definable groupoid]]. An $\infty$-definable set is an intersection of definable sets. We can also consider a \emph{relative} version of a definable set (definability with parameters). Given definable sets $X,Y$, a \emph{fixed} model $M$ and a \emph{fixed} set $A\subset X(M)$, we say that an element $b\in Y(M)$ is definable over $A$ if there is $(a_1,\ldots,a_n)\in A^n$ and a $T$-definable function $f:X^n\to Y$ such that $f(a_1,\ldots,a_n)=b$. All elements $b$ definable over $A$ form the subset $Y(A)\subset Y(M)$. A subset $B\subset M$ is \textbf{definably closed} if it is closed under definable functions. Given $A\subset M$, there is the minimal definably closed subset $B$ such that $A\subset B\subset M$, the \textbf{definable closure} $B = dcl(A)$ of $A$. If we extend the language by the constants from $A$ we get a new language $L_A$. The definable sets in language $L$ over $A$ are the definable sets in language $L_A$ over $\emptyset$. \hypertarget{ind_and_prodefinable_sets}{}\subsection*{{Ind- and pro-definable sets}}\label{ind_and_prodefinable_sets} One can also study [[ind-object]]s and [[pro-object]]s in the category of definable sets and definable functions. \begin{defn} \label{type-definable-set}\hypertarget{type-definable-set}{} An important special case of a pro-definable set that shows up in model theory are \textbf{type-definable sets}, which are just infinite conjunctions of definable sets. (There is no restriction that the formulas representing these definable sets all sit inside a finite product of [[type|sorts]].) \end{defn} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[constructible set]] \item [[recursive subset]] \item [[computable set]] \item [[definable groupoid]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Moshe Kamensky, \emph{Ind- and Pro- definable sets}, \href{http://arxiv.org/abs/math/0608163}{math.LO/0608163} \item Jan Holly, \emph{Definable operations on sets and elimination of imaginaries}, Proc. Amer. Math. Soc. \textbf{117} (1993), no. 4, 1149--1157, \href{http://www.ams.org/mathscinet-getitem?mr=1116261}{MR93e:03052}, \href{http://dx.doi.org/10.2307/2159546}{doi}, \href{http://www.ams.org/journals/proc/1993-117-04/S0002-9939-1993-1116261-6/S0002-9939-1993-1116261-6.pdf}{pdf} \item [[David Kazhdan]], Lecture notes in model theory, \href{http://www.ma.huji.ac.il/~kazhdan/Notes/motivic/b.pdf}{pdf} \item D. Haskell, E. Hrushovski, H.D.Macpherson, \emph{Definable sets in algebraically closed valued fields: elimination of imaginaries}, J. reine und angewandte Mathematik \textbf{597} (2006), \href{http://www.ams.org/mathscinet-getitem?mr=2264318}{MR2007i:03040}, \href{http://dx.doi.org/10.1515}{doi}/CRELLE.2006.066) \end{itemize} [[!redirects definable sets]] [[!redirects pro-definable set]] [[!redirects pro-definable sets]] [[!redirects ind-definable set]] [[!redirects ind-definable sets]] [[!redirects type-definable set]] [[!redirects type-definable sets]] [[!redirects definable subset]] [[!redirects definable subsets]] \end{document}