\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{delooping} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{$(\infty,1)$-Category theory}}\label{category_theory} [[!include quasi-category theory contents]] \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{characterization_of_deloopable_objects}{Characterization of deloopable objects}\dotfill \pageref*{characterization_of_deloopable_objects} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{topological_loop_spaces}{Topological loop spaces}\dotfill \pageref*{topological_loop_spaces} \linebreak \noindent\hyperlink{delooping_of_a_group_to_a_groupoid}{Delooping of a group to a groupoid}\dotfill \pageref*{delooping_of_a_group_to_a_groupoid} \linebreak \noindent\hyperlink{deloopings_of_higher_categorical_structures}{Deloopings of higher categorical structures}\dotfill \pageref*{deloopings_of_higher_categorical_structures} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{delooping} of an object $A$ is, if it exists, a uniquely [[pointed object]] $\mathbf{B} A$ such that $A$ is the [[loop space object]] of $\mathbf{B} A$: \begin{displaymath} A \simeq \Omega(\mathbf{B} A) \end{displaymath} In particular, if $A = G$ is a [[group]] then its delooping \begin{itemize}% \item in the context [[Top]] is the [[classifying space]] $\mathcal{B}G$ \item in the context [[∞-Grpd]] is the one-object groupoid $\mathbf{B}G$. \end{itemize} Under the [[homotopy hypothesis]] these two objects are identified: the [[geometric realization]] of the groupoid $\mathbf{B}G$ is the classifying space $\mathcal{B}G$: \begin{displaymath} |\mathbf{B}G| \simeq \mathcal{B}G \,. \end{displaymath} See [[looping and delooping]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Loop space objects are defined in any [[(∞,1)-category]] $\mathbf{C}$ with [[homotopy pullbacks]]: for $X$ any [[pointed object]] of $\mathbf{C}$ with point ${*} \to X$, its [[loop space object]] is [[generalized the|the]] [[homotopy pullback]] $\Omega X$ of this point along itself: \begin{displaymath} \itexarray{ \Omega X &\to& {*} \\ \downarrow && \downarrow \\ {*} &\to& X } \,. \end{displaymath} Conversely, if $A$ is given and a [[homotopy pullback]] diagram \begin{displaymath} \itexarray{ A &\to& {*} \\ \downarrow && \downarrow \\ {*} &\to& \mathbf{B}A } \end{displaymath} exists, with the point ${*} \to \mathbf{B} A$ being essentially unique, by the above $A$ has been realized as the [[loop space object]] of $\mathbf{B} A$ \begin{displaymath} A = \Omega \mathbf{B} A \end{displaymath} and we say that $\mathbf{B} A$ is the \textbf{delooping} of $A$. See the section at [[groupoid object in an (∞,1)-category]] for more. \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} If $\mathbf{C}$ is even a [[stable (∞,1)-category]] then all deloopings exist and are then also denoted $\Sigma A$ and called the \textbf{[[suspension]]} of $A$. \hypertarget{characterization_of_deloopable_objects}{}\subsection*{{Characterization of deloopable objects}}\label{characterization_of_deloopable_objects} In section 6.1.3 of \begin{itemize}% \item [[Jacob Lurie]], [[Higher Topos Theory]] \end{itemize} a definition of [[groupoid object in an (infinity,1)-category]] $\mathbf{C}$ is given as a homotopy simplicial object, i.e. a [[(infinity,1)-functor]] \begin{displaymath} C : \Delta^{op} \to \mathbf{C} \end{displaymath} \begin{displaymath} \cdots C_2 \stackrel{\to}\rightrightarrows C_1 \rightrightarrows C_0 \end{displaymath} satisfying certain conditions (prop. 6.1.2.6) which are such that if $C_0 = {*}$ is the [[point]] we have an internal \emph{group} in a homotopical sense, given by an object $C_1$ equipped with a coherently associative multiplication operation $C_1 \times C_1 \to C_1$ generalizing that of [[Jim Stasheff|Stasheff]] [[H-space]] from the $(\infty,1)$-category [[Top]] to arbitrary $(\infty,1)$-categories. Lurie calls the groupoid object $C$ an \emph{effective} [[groupoid object in an (infinity,1)-category]] precisely if it arises as the delooping, in the above sense, of some object $\mathbf{B}C$. One of the characterizing properties of an [[(infinity,1)-topos]] is that \emph{every} groupoid object in it is effective. This is the analog of [[Jim Stasheff|Stasheff]]`s classical result about [[H-spaces]]. See the remark at the very end of section 6.1.2 in [[Higher Topos Theory|HTT]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{topological_loop_spaces}{}\subsubsection*{{Topological loop spaces}}\label{topological_loop_spaces} For $C =$ [[Top]] the [[(infinity,1)-category]] of [[topological spaces]], a space is deloopable if it is an [[A-infinity-space]] and hence homotopy equivalent to a [[loop space]]. \hypertarget{delooping_of_a_group_to_a_groupoid}{}\subsubsection*{{Delooping of a group to a groupoid}}\label{delooping_of_a_group_to_a_groupoid} Let $G$ be a [[group]] regarded as a [[discrete category|discrete groupoid]] in the [[(∞,1)-topos]] [[∞Grpd]] of [[∞-groupoids]]. Then $\mathbf{B} G$ exists and is, up to equivalence, the [[groupoid]] \begin{itemize}% \item with a single object $\bullet$, \item with $Hom_{\mathbf{B} G}(\bullet, \bullet) = G$, or equivalently $Aut_{\mathbf{B}G}(\bullet) = G$, \item and with composition of morphisms in $\mathbf{B} G$ being given by the product operation in the group. \end{itemize} More informally but more suggestively we may write \begin{displaymath} \mathbf{B} G = \{ \bullet \stackrel{g}{\to} \bullet | g \in G\} \end{displaymath} or \begin{displaymath} \mathbf{B}G = \{ \bullet \righttoleftarrow g \;|\; g \in G \} \end{displaymath} to emphasize that there is really only a single object. Notice how the [[homotopy pullback]] works in this simple case: the universal 2-cell $\eta$ \begin{displaymath} \itexarray{ G &\to& {*} \\ \downarrow &\Downarrow^{\eta}& \downarrow \\ {*} &\to& \mathbf{B}G } \end{displaymath} filling this [[2-limit]] diagram is the [[natural transformation]] from the constant [[functor]] \begin{displaymath} G \to {*} \to \mathbf{B}G \end{displaymath} to itself, whose component map \begin{displaymath} \eta : Obj(G) \to Mor(\mathbf{B}G) \end{displaymath} is just the identity map, using that $Obj(G) = G$ and $Mor(\mathbf{B}G) = G$. \hypertarget{deloopings_of_higher_categorical_structures}{}\subsection*{{Deloopings of higher categorical structures}}\label{deloopings_of_higher_categorical_structures} There is also a notion of delooping which takes a pointed $(n, k+1)$-category $C$ to a pointed $(n+1, k)$-category $\mathbf{B} C$ in which $\mathbf{B} C$ has a single $0$-cell $\bullet$, and where $\hom(\bullet, \bullet) = C$. This is a tautological construction if one accepts the [[delooping hypothesis]], which views a $(n, k+1)$-category $C$ as a special type of $(n+k+1)$-category, namely a pointed $k$-connected $(n+k+1)$-category: by viewing such as \emph{a fortiori} a pointed $(k-1)$-connected $(n+k+1)$-category, we get the delooping $\mathbf{B} C$. This is just a generalization of the fact that a [[monoid]] $M$ gives rise to a one-object category (which we are denoting $\mathbf{B} M$). For an important example: a [[monoidal category]] $M$ has an associated \textbf{delooping [[bicategory]]} $\mathbf{B} M$, where \begin{itemize}% \item $\mathbf{B} M$ has a single $0$-cell $\bullet$, \item the $1$-cells $\bullet \to \bullet$ of $\mathbf{B} M$ are named by objects of $M$, and the composite of $\bullet \stackrel{a}{\to} \bullet \stackrel{b}{\to} \bullet$ is $\bullet \stackrel{a \otimes b}{\to} \bullet$ (using the monoidal product $\otimes$ of $M$), \item the $2$-cells of $\mathbf{B} M$ are similarly named by morphisms of $M$; the vertical composition of $2$-cells in $\mathbf{B} M$ is given by composition of morphisms of $M$, and the horizontal composition of $2$-cells in $\mathbf{B} M$ is given by taking the monoidal product of the morphisms that name them in $M$. \end{itemize} Along similar lines, the delooping of a [[braided monoidal category]] produces a [[monoidal bicategory]], and delooping of \emph{that} is a [[tricategory]] or (weak) $3$-category. See [[delooping hypothesis]] for more. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[loop space object]], [[free loop space object]], \begin{itemize}% \item \textbf{delooping} \item [[loop space]], [[free loop space]], [[derived loop space]] \end{itemize} \item [[suspension object]] \begin{itemize}% \item [[suspension]], [[reduced suspension]] \end{itemize} \end{itemize} [[!redirects deloopings]] [[!redirects delooped group]] \end{document}