\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{dendroidal homotopy coherent nerve} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{BVResolutionOfTrees}{BV resolution of trees}\dotfill \pageref*{BVResolutionOfTrees} \linebreak \noindent\hyperlink{the_homotopy_coherent_nerve}{The homotopy coherent nerve}\dotfill \pageref*{the_homotopy_coherent_nerve} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{specialization_to_categories}{Specialization to categories}\dotfill \pageref*{specialization_to_categories} \linebreak \noindent\hyperlink{DendroidalInnerKanComplexes}{Dendroidal inner Kan complexes}\dotfill \pageref*{DendroidalInnerKanComplexes} \linebreak \noindent\hyperlink{LeftAdjoint}{Left adjoint}\dotfill \pageref*{LeftAdjoint} \linebreak \noindent\hyperlink{relation_to_ordinary_dendroidal_nerve}{Relation to ordinary dendroidal nerve}\dotfill \pageref*{relation_to_ordinary_dendroidal_nerve} \linebreak \noindent\hyperlink{quillen_equivalence}{Quillen equivalence}\dotfill \pageref*{quillen_equivalence} \linebreak \noindent\hyperlink{resolution_and_rectification}{Resolution and rectification}\dotfill \pageref*{resolution_and_rectification} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{dendroidal homotopy coherent nerve} is an [[operad|operadic]] generalization of the standard [[homotopy coherent nerve]]. It is a [[functor]] \begin{displaymath} hcN_d : Top Operad \to dSet \end{displaymath} from the [[category]] of [[Top]]-[[operads]] to that of [[dendroidal sets]], given by \begin{displaymath} hcsN_d(P) : T \mapsto dSet(W_H(T), P) \,, \end{displaymath} where $T$ is an object of the [[tree category]], regarded as a free [[symmetric operad]], and $W_H(T)$ is its [[Boardman-Vogt resolution]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Throughout, let $\mathcal{E}$ be a [[symmetric monoidal category|symmetric]] [[monoidal model category]] equipped with an [[interval object]] $H$ as discussed at \emph{[[model structure on operads]]} and at \emph{[[Boardman-Vogt resolution]]}. We consider multi-coloured [[symmetric operads]] ([[symmetric multicategories]]) enriched in $\mathcal{E}$. Standard examples are $\mathcal{E} =$ [[Top]], [[sSet]], which yields [[topological operads]] and [[simplicial operads]], respectively. \hypertarget{BVResolutionOfTrees}{}\subsubsection*{{BV resolution of trees}}\label{BVResolutionOfTrees} We discuss in detail what the [[Boardman-Vogt resolution]] of [[operads]] free on an object in the [[tree category]] $\Omega$ is like (see \emph{[[dendroidal set]]} for details on trees as operads). Let \begin{displaymath} Symm : \mathcal{E} Operad_{planar} \to \mathcal{E} Operad \end{displaymath} be the symmetrization functor, the [[left adjoint]] to the [[forgetful functor]] from [[symmetric operads]] to [[planar operads]]. \begin{prop} \label{}\hypertarget{}{} The BV resolution commutes with symmetrization: if $T = Symm(\bar T)$, then \begin{displaymath} W(T) = Symm(W(\bar T)) \,. \end{displaymath} \end{prop} Therefore we describe in the following explicitly the BV-resolution of planar trees, that of non-planar trees then being the symmetrization of that construction. \begin{prop} \label{ComponentDescriptionofBVofTrees}\hypertarget{ComponentDescriptionofBVofTrees}{} For $T \in \Omega_{planar}$, and $(e_1, \cdots, e_n; e)$ a tuple of colours (edges) of $T$, notice that the set of operations $T(e_1, \cdots, e_n, e)$ is the set of those subtrees $V \subset T$ such that $\{e_1, \cdots, e_n\}$ is the set of leaves and $e$ is the root of $V$. First regard $T$ as a [[topological operad]] (with a [[discrete space]] of operations in each degree). The corresponding [[Boardman-Vogt resolution]] $W(T)$ of $T$ is the topological operad whose [[topological space]] of operations $W(T)(e_1, \cdots, e_n; e)$ is the space of \emph{labeled trees} as follows. A point is a set of \emph{lengths} $\ell(e) \in [0,1]$, one for each inner edge $e \in I(T)$ of $T$. (\ldots{}) Hence \begin{displaymath} W(T)(e_1, \cdots, e_n; e) \simeq \coprod_{V \in T(e_1, \cdots, e_n; e)} (\Delta^1)^{\times i(V)} \end{displaymath} where the [[coproduct]] ranges over the set of subtrees $V$, as just discussed (which therefore is either the singleton set or is empty), and where $i(V)$ is the set of inner edges of $V$. Regard then $T$ as a [[simplicial operad]]. The corresponding [[Boardman-Vogt resolution]] $W(T)$ of $T$ is the simplicial operad whose [[simplicial sets]] of operations are \begin{displaymath} W(T)(e_1, \cdots, e_n; e) = \coprod_{V \in T(e_1, \cdots, e_n; e)} \Delta[1]^{\times i(V)} \,. \end{displaymath} In general, when $T$ is regarded as an $\mathcal{E}$-operad, we have \begin{displaymath} W(T)(e_1, \cdots, e_n; e) = \coprod_{V \in T(e_1, \cdots, e_n; e)} H^{\otimes i(V)} \,, \end{displaymath} where $H$ is the given [[interval object]]. \end{prop} \begin{prop} \label{CompositioninWT}\hypertarget{CompositioninWT}{} The composition operations in $W(T)$ \begin{displaymath} \itexarray{ W(T)(e_1, \cdots, e_n; e_0) \otimes W(T)(f_1, \cdots, f_k; e_i) \\ \downarrow^{\mathrlap{\circ_i}} \\ W(T)(e_1, \cdots, e_{i-1}, f_1, \cdots, f_k, e_{i+1}, \cdots, e_n) } \end{displaymath} correspond to grafting of trees $T_\sigma, T_\rho \subset T$ and ``assigning unit length to the new inner edge''. On the components as discussed above it is given by \begin{displaymath} \itexarray{ H^{\otimes i(T_\sigma)} \otimes H^{\otimes i(T_\rho)} && H^{\otimes i(T_\sigma \circ_i T_\rho)} \\ \downarrow^{\mathrlap{\simeq}} && \uparrow^{\mathrlap{\simeq}} \\ H^{\otimes i(T_\sigma) \cup i(T_\rho)} \otimes I &\stackrel{id \otimes i_1}{\to}& H^{\otimes (i(T_\sigma) \cup i(T_\rho))} \otimes H } \end{displaymath} \end{prop} \begin{prop} \label{BVResolutionAsFunctorOnOmega}\hypertarget{BVResolutionAsFunctorOnOmega}{} The BV-resolution of trees extends to a [[functor]] on the category of [[simplicial operad]] \begin{displaymath} W : \Omega \to sSet Operad \end{displaymath} as follows \begin{itemize}% \item on an inner face map $\delta_e : \partial^e\Omega[T] \to \Omega[T]$ the component of $W(\delta)$ on a subtree $V$ of $T$ that contains the edge $e$ is the product of the inclusion \begin{displaymath} i_0 : I \to H \end{displaymath} with the identity on $H^{i(V)-\{e\}}$ (meaning: if the label of an inner edge in a tree is 0, then the operations that it connects may be composed); \item on a degenracy map $\sigma$ that sends two given unary vertices to a single one, the component of $W(\sigma)$ on subtrees containing these removes one of the factors $H$ by the map \begin{displaymath} H \otimes H \to H \end{displaymath} given by the [[interval object]] $H$. For both [[simplicial operads]] and [[topological operads]] this may be taken to be the map \begin{displaymath} max : \Delta^1 \times \Delta^1 \to \Delta^1 \end{displaymath} that sends $(x,y)$ to $max(x,y)$. \end{itemize} \end{prop} This is discussed in section 4.2 of (\hyperlink{CisinskiMoerdijk}{Cisinski-Moerdijk}). \hypertarget{the_homotopy_coherent_nerve}{}\subsubsection*{{The homotopy coherent nerve}}\label{the_homotopy_coherent_nerve} By the general discussion at \emph{[[nerve and realization]]}, the functor \begin{displaymath} W : \Omega \to sSet Operad \end{displaymath} from prop. \ref{BVResolutionAsFunctorOnOmega} induces a [[nerve]] functor as follows. \begin{defn} \label{}\hypertarget{}{} The \textbf{dendroidal homotopy coherent nerve} functor is the [[functor]] \begin{displaymath} hcN_d : sSet Cat \to dSet \end{displaymath} given by \begin{displaymath} P \mapsto ( T \mapsto sSet Operad(W(T), P) ) \,. \end{displaymath} Its [[left adjoint]] (the corresponding ``[[geometric realization]]'') we denote \begin{displaymath} W_! : dSet \to sSet Operad \,. \end{displaymath} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{specialization_to_categories}{}\subsubsection*{{Specialization to categories}}\label{specialization_to_categories} \begin{prop} \label{}\hypertarget{}{} When restricted to $\mathcal{E}$-[[enriched categories]], the dendroidal homotopy coherent nerve reproduces the [[homotopy coherent nerve]] of enriched categories \begin{displaymath} \itexarray{ \mathcal{E} Cat &\hookrightarrow& \mathcal{E} Operad \\ {}^{\mathllap{hcN}}\downarrow && \downarrow^{\mathrlap{hcN_d}} \\ sSet &\hookrightarrow& dSet } \,. \end{displaymath} In particular for $\mathcal{E} =$ [[Top]] / [[sSet]] it reproduces the original definition of homotopy coherent nerve. \end{prop} \hypertarget{DendroidalInnerKanComplexes}{}\subsubsection*{{Dendroidal inner Kan complexes}}\label{DendroidalInnerKanComplexes} \begin{prop} \label{hcNOfLocllyFibrantOperadIsFibrant}\hypertarget{hcNOfLocllyFibrantOperadIsFibrant}{} Let $P \in \mathcal{E} Operad$ be such that each object of operations is fibrant in $\mathcal{E}$. Then its homotopy coherent nerve $hcN_d(P)$ is a [[model structure on dendroidal sets|dendroidal inner Kan complex]]. \end{prop} This is (\hyperlink{MoerdijkWeiss}{Moerdijk-Weiss, theorem 7.1}). This statement will also follow as a corollary from prop. \ref{WIsLeftQuillen} below. \begin{proof} Consider a tree $T$ and an inner edge $e$ of it. For each morphism $\phi : \Lambda^e[T] \to X$ we need to find a filler $\psi$ in \begin{displaymath} \itexarray{ \Lambda^e[T] &\to& hcN_d(X) \\ \downarrow & \nearrow_{\mathrlap{\psi}} \\ \Omega[T] } \,. \end{displaymath} Write $\Lambda^e[T] = \cup_{i \neq e}\partial^{i \neq e} \Omega[T]$. By the definition of dendroidal nerve, this is equivalently a diagram \begin{displaymath} \itexarray{ \cup_{i \neq e } W(\partial^i \Omega[T]) &\to& X \\ \downarrow & \nearrow_{\mathrlap{\hat \psi}} \\ W(\Omega[T]) } \,. \end{displaymath} The undetermined component to fill is that corresponding to the subtree $\tau$ of $T$ which is $T$ itself. According to prop. \ref{ComponentDescriptionofBVofTrees} on this the operad $W(\Omega[T])$ has the component \begin{displaymath} H^{\otimes i(\tau)} \simeq H^{\otimes i(\tau)- \{e\}}\otimes H \,. \end{displaymath} The map $\hat \psi$ has to send this into $X$ while being compatible with the given faces. By prop. \ref{BVResolutionAsFunctorOnOmega} this means that its precomposition with all the inclusions \begin{displaymath} (id, \cdots, id, i_0, id, \cdots, id) \otimes id : H \otimes \cdots \otimes H \otimes I \otimes H \otimes \cdots \otimes H \otimes H \to H^{\otimes i(\tau)- \{e\}}\otimes H \end{displaymath} is fixed. Moreover, the assignment needs to be compatible with the composition operations, which by prop. \ref{CompositioninWT} means that also the precomposition with all the maps \begin{displaymath} (id, \cdots, id, i_1, id, \cdots, id) : H \otimes \cdots \otimes H \otimes I \otimes H \otimes \cdots \otimes H \to H^{\otimes i(\tau)} \end{displaymath} is fixed. In total this means that the components of $\hat \psi$ need to form an extension of the form \begin{displaymath} \itexarray{ (\partial H^{\otimes i(\tau)- \{e\}}) \otimes H \cup H^{\otimes i(\tau) - \{e\}}\otimes I &\to& X(\tau) \\ \downarrow & \nearrow \\ H^{\otimes i(\tau)} } \end{displaymath} in $\mathcal{E}$, where \begin{displaymath} \partial H^n := (I \coprod I) \otimes H^{n-1} \coprod H (I \coprod I) \otimes H^{n-2} \coprod \cdots \stackrel{(i_0,i_1)\otimes id \coprod \cdots}{\to} H^n \,. \end{displaymath} One sees that the left vertical morphism is an acyclic cofibration, by the [[pushout-product axiom]] in the [[monoidal model category]] $\mathcal{E}$. Therefore by the assumption that $X(\tau)$ is fibrant, such a lift does exist. \end{proof} \hypertarget{LeftAdjoint}{}\subsubsection*{{Left adjoint}}\label{LeftAdjoint} \begin{defn} \label{}\hypertarget{}{} Write \begin{displaymath} W_! : dSet \to sSet Operad \end{displaymath} for the [[Yoneda extension]] of \begin{displaymath} \Omega \hookrightarrow Operad \hookrightarrow sSet Operad \stackrel{W}{\to} sSet Operad \,; \end{displaymath} hence for the [[functor]] from [[dendroidal sets]] to [[simplicial operads]], which \begin{itemize}% \item preserves [[colimits]]; \item on trees $\Omega \hookrightarrow Operad \hookrightarrow sSet Operad$ is given by the [[Boardman-Vogt resolution]] as discussed \hyperlink{BVResolutionOfTrees}{above}. \end{itemize} \end{defn} By the general lore of [[nerve and realization]] we have \begin{prop} \label{}\hypertarget{}{} $W_!$ is [[left adjoint]] to $hcN_d$ \begin{displaymath} (W_! \dashv hcN_d) : sSet Operad \stackrel{\overset{N_d}{\leftarrow}}{\underset{hcN_d}{\to}} dSet \,. \end{displaymath} \end{prop} \begin{remark} \label{}\hypertarget{}{} For $P \in sSet Operad$, the [[unit of an adjunction|counit]] \begin{displaymath} W_! hcN_d (P) \to P \end{displaymath} is essentially the [[Boardman-Vogt resolution]] of $P$. For a cofibrant and fibrant $X \in dSet$, the [[unit of an adjunction|unit]] \begin{displaymath} X \to hcN_d W_!(X) \end{displaymath} may be viewed as a ``strictification'' of the [[(infinity,1)-operad]] given by $X$, in that $W_!(X)$, being a simplicial operad, has strictly associative composition. \end{remark} \hypertarget{relation_to_ordinary_dendroidal_nerve}{}\subsubsection*{{Relation to ordinary dendroidal nerve}}\label{relation_to_ordinary_dendroidal_nerve} By the general properties of the [[Boardman-Vogt resolution]] (but also immediately checked directly) we have \begin{prop} \label{CounitOfResolutionOnTrees}\hypertarget{CounitOfResolutionOnTrees}{} There is a [[natural transformation]] \begin{displaymath} \epsilon : W \Rightarrow \Omega(-) : \Omega \to sSet Operad \end{displaymath} \begin{displaymath} \epsilon_T : W(T) \to T \end{displaymath} (natural in the tree $T \in \Omega$), which is a bijection on colors and is on the components of prop. \ref{ComponentDescriptionofBVofTrees} the canonical map \begin{displaymath} \Delta[1]^{i(V)} \to * \,. \end{displaymath} Each $\epsilon_T$ is hence a weak equivalence of simplicial operads. In particular \begin{displaymath} \pi_0(W(T)) \to T \end{displaymath} is an [[isomorphism]]. \end{prop} This induces hence a [[natural transformation]] \begin{displaymath} W_! \Rightarrow \tau_d : dSet \to sSet Operad \end{displaymath} to the left adjoint $\tau_d$ of the ordinary [[dendroidal nerve]] (the ``fundamental operad'' construction). \begin{prop} \label{}\hypertarget{}{} For every [[dendroidal set]] $X$, the natural morphism \begin{displaymath} \pi_0 W_!(X) \to \pi_0 \tau_d (X) = \tau_d(X) \end{displaymath} is an [[isomorphism]] of simplicial operads. \end{prop} This appears as \hyperlink{CisinskiMoerdijk}{Cisinski-Moerdijk, prop. 4.4}. \begin{proof} The functors $\pi_0 W_!$ and $\tau_d$, being [[left adjoints]], both preserve small [[colimits]]. Therefore it is sufficient to check the statement for $X = \Omega[T]$ a tree. There it is prop. \ref{CounitOfResolutionOnTrees}. \end{proof} \hypertarget{quillen_equivalence}{}\subsubsection*{{Quillen equivalence}}\label{quillen_equivalence} \begin{theorem} \label{}\hypertarget{}{} The [[adjunction]] $(W_! \dashv hcN_d)$ from \hyperlink{LeftAdjoint}{above} is a [[Quillen equivalence]] between the [[model structure on operads]] over [[Top]]/[[sSet]] and the [[model structure on dendroidal sets]]. \end{theorem} We discuss some input to this statement. \begin{prop} \label{WIsLeftQuillen}\hypertarget{WIsLeftQuillen}{} The functor $W_! : dSet \to sSet Operad$ sends normal monomorphisms to cofibrations, and inner [[anodyne extensions]] to [[acyclic cofibrations]] in the [[model structure on sSet-operads]]. \end{prop} This appears as \hyperlink{CisinskiMoerdijk}{Cisinski-Moerdijk, prop. 4.5}. \begin{proof} Observe that the morphism classes in question are, as discussed at \emph{[[dendroidal set]]}, the saturated classes generated by the dendroidal boundary inclusions and by the dendroidal horn inclusions, respectively. Since $W_!$ is left adjoint, it therefore suffices to check the statement on these generating inclusions. Moreover, by construction, on trees $W_!$ coincides with the [[Boardman-Vogt resolution]] of the operads free on these trees. It follows that the generating inclusions are sent by $W_!$ to morphisms of simplicial operads which are \begin{itemize}% \item bijective on objects; \item isomorphisms on all but one simplicial set of operations: that corresponding to the maximal subtree; \item on this remaining simplicial set of operations a product of identities with cofibrations of simplicial sets (monomorphisms), and following through the combinatorics shows that these are acyclic for the case of anodyne extensions. \end{itemize} It follows that these morphisms of simplicial operads have the left lifting property again operation-object-wise [[Kan fibrations]] (there is no further composition to be respected, since the maximal subtree operation has no further non-trivial composites), and hence against the fibrations of the [[model structure on sSet-operads]]. \end{proof} \begin{remark} \label{}\hypertarget{}{} Prop.\ref{hcNOfLocllyFibrantOperadIsFibrant} is, in turn, a direct consequence of this. \end{remark} \hypertarget{resolution_and_rectification}{}\subsubsection*{{Resolution and rectification}}\label{resolution_and_rectification} \begin{prop} \label{}\hypertarget{}{} Let $P$ be an [[operad]] in [[Set]], regarded as an $\mathcal{E}$-operad. Then the $(W_! \dashv hcN_d)$-[[unit of an adjunction|counit]] \begin{displaymath} W_! N_d(P) = W_! hcN_d (P) \to P \end{displaymath} is isomorphic to the [[Boardman-Vogt resolution]] $W_H(P)$ of $P$. In particular, therefore, there is a [[natural isomorphism]] \begin{displaymath} Hom_{\mathcal{E}Operad}(W_H(P), Q) \simeq Hom_{dSet}(N_d(P), hcN_d(Q)) \,. \end{displaymath} \end{prop} (Here we are using that on a discrete operad $P$ the homotopy coherent dendroidal nerve trivially coincides with the ordinary dendroidal nerve $N_d$.) \begin{proof} By inspection of the relevant formulas. \end{proof} \begin{prop} \label{}\hypertarget{}{} For a cofibrant and fibrant dendroidal set $X$, the $(W_! \dashv hcN_d)$-[[unit of an adjunction|unit]] \begin{displaymath} X \to hcN_d W_! X \end{displaymath} is an equivalence. \end{prop} \begin{remark} \label{}\hypertarget{}{} Since composition of operations in a simplicial operad is strictly associative, this may be understood as producing a semi-strictification of the $\infty$-operad $X$. \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include table - models for (infinity,1)-operads]] \hypertarget{references}{}\subsection*{{References}}\label{references} The fact that the homotopy coherent nerve if a locally fibrant operad is inner Kan is shown in section 7 of \begin{itemize}% \item [[Ieke Moerdijk]], [[Ittay Weiss]], \emph{On inner Kan complexes in the category of dendroidal sets}, (\href{http://arxiv.org/abs/math/0701295}{math.CT/0701295}) \end{itemize} The Quillen adjunction properties of the homotopy coherent dendroidal nerve are discussed in section 4 of \begin{itemize}% \item [[Denis-Charles Cisinski]], [[Ieke Moerdijk]], \emph{Dendroidal sets and simplicial operads} (\href{http://arxiv.org/abs/1109.1004}{arXiv:1109.1004}) \end{itemize} Lecture notes on these two topics are in section 6 and 9 of \begin{itemize}% \item [[Ieke Moerdijk]], \emph{Lectures on dendroidal sets} , lectures given at the Barcelona workshop on \emph{\href{http://www.crm.es/HigherCategories/}{Simplicial methods in higher categories}} (2008) (\href{http://www.crm.cat/HigherCategories/hc1.pdf}{preliminary writeup}) \end{itemize} [[!redirects homotopy coherent dendroidal nerve]] \end{document}