\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{dense functor} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{terminology_and_history}{Terminology and History}\dotfill \pageref*{terminology_and_history} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{warning}{Warning}\dotfill \pageref*{warning} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[topology]], a not necessarily continuous function $f:X\to Y$ between [[Hausdorff space|Hausdorff spaces]] is \emph{dominant}, or \emph{dense}, in the sense that the [[image]] of $f$ is [[dense subspace|dense]] in $Y$, precisely if every continuous map $g:Y\to Z$ to some other Hausdorff space $Z$ is uniquely determined by $g\circ f$. The concept of a \textbf{dense functor} is a generalization of this concept to functors. An important special case that was also historically the source of the concept, is the case of a [[dense subcategory]] inclusion: a [[subcategory]] $S$ of category $C$ is \emph{dense} if every object $c$ of $C$ is a [[colimit]] of a diagram of objects in $S$, in a canonical way. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A functor $i:S\to C$ is \textbf{dense} if it satisfies the following equivalent conditions. \begin{enumerate}% \item every object $c$ of $C$ is the vertex of the following colimit over the [[comma category]] $(i/c)$: \begin{displaymath} \mathrm{colim}((i/c)\stackrel{\mathrm{pr}_S}{\longrightarrow} S \stackrel{i}{\to} C) \end{displaymath} \item every object $c$ of $C$ is the $C(i-,c)$-weighted colimit of $i$. This version generalizes more readily to the [[enriched category|enriched]] context. \item the corresponding [[restricted Yoneda embedding]] $C \to [S^{op},Set]$ is [[full and faithful functor|fully faithful]]. \end{enumerate} \hypertarget{terminology_and_history}{}\subsection*{{Terminology and History}}\label{terminology_and_history} [[John Isbell]] introduced [[dense subcategory|dense subcategories]] in a seminal paper \hyperlink{MR0175954}{(Isbell 1960)} under the name \emph{left adequate}. The dual notion of \emph{right adequate} was also introduced and subcategories satisfying both were called \emph{adequate}. It was also shown that while the relation of being left (or right) adequate is not transitive, being adequate is transitive. He also brought out interesting connections with [[set theory]] and [[measurable cardinals]]. Later in the mid 60s, [[Friedrich Ulmer]] considered the concept for more general functors $F:C\to D$, not only inclusions $I:C\hookrightarrow D$, and introduced the name \emph{dense} for them. Independently, [[Pierre Gabriel]] worked on this concept and their work coalesced to what was to become the concept of a [[locally presentable category]] of their \hyperlink{GabrielUlmer71}{1971 monograph}. It is also good to keep in mind the `\emph{Abelian}' subcontext in the background, in particular the developments in module theory e.g. Lazard's (1964) characterization of flat modules as filtered colimits of finitely generated free modules. More recently, [[Jacob Lurie]] has referred to the analogue notion for [[(∞,1)-categories]] as \emph{strongly generating} in a version (arXiv v4) of his [[Higher Topos Theory|HTT]], but that term normally means [[strong generator|something different]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{enumerate}% \item Let $V$ be a category of [[algebras]] and $n \in \mathbb{N}$ such that $V$ has a presentation with operations of at most arity $n$. Let $v$ be the free $V$-algebra on $n$ generators. Then the full subcategory with object $v$ is dense in $V$. \item In $\Set$, a singleton space is dense. \end{enumerate} \hypertarget{warning}{}\subsection*{{Warning}}\label{warning} There is a different notion of a dense subcategory, often used in [[shape theory]], which has a bit of the same spirit. A [[full subcategory]] $D\subset C$ is \textbf{dense} in this second sense, if every object in $C$ admits a $D$-expansion. A \emph{$D$-expansion} of an object $X$ in $C$ is a morphism $X\to \mathbf{X}$ in $\mathrm{pro}C$ such that $\mathbf{X}$ is in $\mathrm{pro}D$ and $X$ is the rudimentary system (constant inverse system) corresponding to $X$; moreover one asks that the morphism is universal among all such morphisms $X\to\mathbf{Y}$. Given a dense subcategory $D\subset C$ one defines an abstract shape category $\mathrm{Sh}(C,D)$ which has the same objects as $C$, but the morphisms are the equivalence classes of morphisms in $\mathrm{pro}D$ of $D$-expansions. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[dense subcategory]] \item [[codensity monad]] \item [[space and quantity]] \item [[dominant geometric morphism]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[William Lawvere]], \emph{John Isbell's Adequate Subcategories}, TopCom \textbf{11} no.1 2006. (\href{http://at.yorku.ca/t/o/p/d/65.htm}{link}) \item [[Pierre Gabriel|Peter Gabriel]], [[Friedrich Ulmer]], \emph{Lokal pr\"a{}sentierbare Kategorien} , LNM \textbf{221} Springer Heidelberg 1971. (\S{} 3, pp.38-44) \item [[John Isbell]], \emph{Adequate subcategories} , Illinois J. Math. \textbf{4} (1960) pp.541-552. \href{http://www.ams.org/mathscinet-getitem?mr=0175954}{MR0175954}. (\href{https://projecteuclid.org/euclid.ijm/1255456274}{euclid}) \item [[John Isbell]], \emph{Subobjects, adequacy, completeness and categories of algebras} , Rozprawy Mat. \textbf{36} (1964) pp.1-32. (\href{http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.desklight-0dbcb276-0b92-49eb-b504-a9963119ea3e}{toc}, \href{http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.desklight-0dbcb276-0b92-49eb-b504-a9963119ea3e/c/rm36_01.pdf}{pdf}) \item [[Max Kelly]], \emph{Basic Concepts of Enriched Category Theory} , Cambridge UP 1982. (Reprinted as \href{http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html}{TAC reprint no.10} (2005); chapter 5, pp.85-112) \item [[Saunders Mac Lane]], \emph{Categories for the Working Mathematician} , Springer Heidelberg 1998$^2$. (section X.6, pp.245ff, 250) \item Horst Schubert, \emph{Kategorien II} , Springer Heidelberg 1970. (section 17.2, pp.29ff) \item [[Friedrich Ulmer]], \emph{Properties of dense and relative adjoint functors} , J. of Algebra \textbf{8} (1968) pp.77-95. \end{itemize} [[!redirects adequate subcategory]] [[!redirects left adequate subcategory]] \end{document}