\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{dense sub-site} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{notions_of_subcategory}{}\paragraph*{{Notions of subcategory}}\label{notions_of_subcategory} [[!include notions of subcategory]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{problems_with_another_definition}{Problems with another definition}\dotfill \pageref*{problems_with_another_definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{warning}{Warning}\dotfill \pageref*{warning} \linebreak \noindent\hyperlink{remark_2}{Remark}\dotfill \pageref*{remark_2} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{dense sub-site} is a [[subcategory]] of a [[site]] such that a natural [[functor]] between the corresponding [[categories of sheaves]] is an [[equivalence|equivalence of categories]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{prop} \label{InducedCoverage}\hypertarget{InducedCoverage}{} For $(C,J)$ a [[site]] with [[coverage]] $J$ and $D \to C$ any [[subcategory]], the \textbf{induced coverage} $J_D$ on $D$ has as [[covering]] [[sieve|sieves]] the intersections of the covering sieves of $C$ with the morphisms in $D$. \end{prop} \begin{prop} \label{DenseSubSite}\hypertarget{DenseSubSite}{} Let $(C,J)$ be a [[site]] (possibly [[large site|large]]). A [[subcategory]] $D \to C$ (not necessarily [[full subcategory|full]]) is called a \textbf{dense sub-site} with the \hyperlink{InducedCoverage}{induced coverage} $J_D$ if \begin{enumerate}% \item every object $U \in C$ has a [[covering]] [[sieve]] generated by maps $U_i \to U$ with $U_i \in D$. \item for every morphism $f : U \to V$ in $C$ with $U, V \in D$ there is a [[covering]] [[sieve]] $\{f_i : U_i \to U\}$ of $U$ in $D$ such that the composites $f \circ f_i$ are in $D$. \end{enumerate} \end{prop} \begin{remark} \label{}\hypertarget{}{} If $D$ is a [[full subcategory]] then the second condition is automatic. \end{remark} The following theorem is known as the \textbf{[[comparison lemma]]}. \begin{theorem} \label{}\hypertarget{}{} Let $(C,J)$ be a (possibly [[large site|large]]) [[site]] with $C$ a [[locally small category]] and let $f : D \to C$ be a [[small category|small]] \hyperlink{DenseSubSite}{dense sub-site}. Then the pair of [[adjoint functor]]s \begin{displaymath} (f^* \dashv f_*) : PSh(D) \stackrel{\overset{f^*}{\leftarrow}}{\underset{f_*}{\to}} PSh(C) \end{displaymath} with $f^*$ given by precomposition with $f$ and $f_*$ given by right [[Kan extension]] induces an [[equivalence of categories]] between the categories of sheaves \begin{displaymath} (f_* \dashv f^*) : Sh_{J_D}(D) \underoverset {\underset{f_*}{\to}}{\overset{f^*} {\leftarrow}} {\simeq} Sh_J{C} \,. \end{displaymath} \end{theorem} This appears as (\hyperlink{JTT02}{Johnstone, theorem C2.2.3}). \hypertarget{problems_with_another_definition}{}\subsection*{{Problems with another definition}}\label{problems_with_another_definition} The nLab following Johnstone (\hyperlink{JTT02}{2002}, p.546) had initially the following form of condition 2 in definition \ref{DenseSubSite}: 2'. For every morphism $f : U \to V$ in $C$ with $V \in D$ there is a cover $S\in J(U)$ in $C$ generated by a family of morphisms $\{f_i : U_i \to U\}$ in $C$ such that the composites $f \circ f_i$ are in $D$. But this is too weak to prove the comparison lemma as the following example shows: Let $C$ be any groupoid, with the trivial topology (only maximal sieves cover), and let $D$ be the discrete category on the same objects. Then for any morphism $f:U\to V$, its inverse $f^{-1}:V\to U$ generates the maximal sieve on $U$, and the composite $f f^{-1} = 1_V$ is in $D$, so the conditions 1 and 2' of the definition are satisfied. But the restriction $Set^{C^{op}} \to Set^{D^{op}}$ is not generally an equivalence. See the dicussion \href{https://nforum.ncatlab.org/discussion/7220/dense-subsite/#Item_0}{here}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Let $X$ be a [[locale]] with [[frame]] $Op(X)$ regarded as a site with the canonical coverage ($\{U_i \to U\}$ covers if the [[join]] of the $U_i$ is $U$). Let $bOp(X)$ be a [[basis for the topology]] of $X$: a complete join-[[semilattice]] such that every object of $Op(X)$ is the [[join]] of objects of $bOp(X)$. Then $bOp(X)$ is a dense sub-site. \begin{itemize}% \item For $X$ a [[locally contractible space]], $Op(X)$ its [[category of open subsets]] and $cOp(X)$ the full subcategory of [[contractible]] open subsets, we have that $cOp(X)$ is a dense sub-site. \end{itemize} \item For $C = TopManifold$ the category of all [[topological manifold]]s equipped with the [[open cover]] coverage, the category [[CartSp]]${}_{top}$ is a dense sub-site: every [[topological manifold]] has an [[open cover]] by [[open balls]] [[homeomorphic]] to a [[Cartesian space]]. \begin{itemize}% \item For $C = PCompTopManifold$ the category of all [[paracompact topological space|paracompact]] [[topological manifold]]s equipped with the [[good open cover]] coverage, the category [[CartSp]]${}_{top}$ is a dense sub-site: every paracompact [[topological manifold]] has an [[good open cover]] by [[open balls]] [[homeomorphic]] to a [[Cartesian space]]. \item Similarly for $C =$ [[Diff]] the category of [[paracompact topological space|paracompact]] [[smooth manifold]]s equipped with the [[good open cover]] [[coverage]], the full subcategory [[CartSp]]${}_{smooth}$ is a dense sub-site: every such smooth manifold has a \emph{differentiably} [[good open cover]] (see there): a good cover by open balls each of which are [[diffeomorphic]] to a [[Cartesian space]]. \end{itemize} \end{itemize} \hypertarget{warning}{}\subsection*{{Warning}}\label{warning} Replacing [[sheaves]] by [[(∞,1)-sheaves]] of [[spaces]] produces a strictly stronger notion. See [[(∞,1)-comparison lemma]] for a sufficient criterion for a dense inclusion of [[(∞,1)-sites]]. \hypertarget{remark_2}{}\subsection*{{Remark}}\label{remark_2} There is also the notion of \emph{[[dense subcategory]]}, which is however only remotly related to the concept of a \emph{dense sub-site} by both vaguely invoking the topological concept of a [[dense subspace]]. \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[comparison lemma]] \item [[(∞,1)-comparison lemma]] \item [[covering lifting property]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The comparison lemma originates with the expos\'e{} III by [[J. L. Verdier|Verdier]] in \begin{itemize}% \item [[M. Artin]], [[A. Grothendieck]], [[J. L. Verdier]], \emph{Th\'e{}orie des Topos et Cohomologie Etale des Sch\'e{}mas ([[SGA4]])}, LNM \textbf{269} Springer Heidelberg 1972. (p.288) \end{itemize} A more general form is used to give a site characterization for [[étendue|étendue toposes]] in \begin{itemize}% \item [[A. Kock]], [[I. Moerdijk]], \emph{Presentations of Etendues} , Cah. Top. G\'e{}om. Diff. Cat. \textbf{XXXII} 2 (1991) pp.145-164. (\href{http://www.numdam.org/numdam-bin/item?id=CTGDC_1991__32_2_145_0}{numdam}, pp.151f) \end{itemize} A proof of the comparison lemma together with a nice list of examples is in \begin{itemize}% \item [[Saunders Mac Lane|S. Mac Lane]], [[I. Moerdijk]], \emph{Sheaves in Geometry and Logic} , Springer Heidelberg 1994. (Appendix 4, pp.590ff) \end{itemize} See also \begin{itemize}% \item [[Olivia Caramello]], \emph{Denseness conditions, morphisms and equivalences of toposes} , arXiv:1906.08737 (2019). (\href{https://arxiv.org/abs/1906.08737}{abstract}) \item [[Peter Johnstone]], \emph{[[Elephant|Sketches of an Elephant]] vol 2} , Oxford UP 2002. (Section C2.2, p.546) \item [[Mike Shulman]], \emph{Exact Completions and Small Sheaves} , TAC \textbf{27} no.7 (2012) pp.97-173. (\href{http://www.tac.mta.ca/tac/volumes/27/7/27-07abs.html}{abstract}; Section 11) \end{itemize} [[!redirects induced coverage]] [[!redirects dense sub-site]] [[!redirects dense sub-sites]] [[!redirects dense subsite]] [[!redirects dense subsites]] \end{document}