\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{dense subspace} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{in_constructive_mathematics}{In constructive mathematics}\dotfill \pageref*{in_constructive_mathematics} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Given a [[topological space]] (or [[locale]]) $X$, a [[subspace]] $A$ of $X$ is \textbf{dense} if its [[closed subspace|closure]] is all of $X$: $cl(A)=X$. Since $cl(A)$ is the set of all points $x$ such that every [[open neighborhood]] of $x$ [[intersection|intersects]] $A$, this can equivalently be written as ``every open neighborhood of every point intersects $A$'', or equivalently ``every [[inhabited set|inhabited]] open set intersects $A$'', i.e. $A\cap U$ is [[inhabited]] for all inhabited open sets $U$. Contraposing this, we obtain another equivalent definition ``the only open subset not intersecting $A$ is the empty set'', or ``if $A\cap U=\emptyset$ for some open set $U$, then $U=\emptyset$''. This is the definition usually given when $X$ is a [[locale]]: a [[nucleus]] $j$ is dense if $j(0)=0$ (since $j(0)$ is the union of all opens whose ``intersection with $j$'' is $0$). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{itemize}% \item If $A \subseteq X$ is a dense subset of a topological space $X$ and $f: X \to Y$ is an [[epimorphism]], then the [[image]] $f(A)$ is dense in $Y$. \item If i: $A \hookrightarrow X$ and $j: X \hookrightarrow B$ are dense subspace inclusions, then so is the composite $j \circ i: A \to B$. \item If $A\subseteq X$ is a dense subset of topological space $X$ and $A$ is connected, so is $X$. \item In point-set topology, a space is [[separable space|separable]] if and only if it has a dense subspace with [[countable set|countably]] many points. \item In [[locale]] theory, we have the curious property that any [[intersection]] of dense subspaces is still dense. (This of course fails rather badly for [[topological spaces]], where the intersection of all dense topological subspaces is the space of [[isolated point]]s.) One consequence is that every locale has a smallest dense sublocale, the [[double negation sublocale]]. \end{itemize} \hypertarget{in_constructive_mathematics}{}\subsection*{{In constructive mathematics}}\label{in_constructive_mathematics} In [[constructive mathematics]], the law of contraposition is not an equivalence, so we obtain two inequivalent notions of density: \begin{itemize}% \item $A\subseteq X$ is \textbf{strongly dense} if $A\cap U$ is inhabited for all inhabited open sets $U\subseteq X$. \item $A\subseteq X$ is \textbf{weakly dense} if $A\cap U = \emptyset$ for some open $U\subseteq X$ implies $U=\emptyset$. \end{itemize} Of course, strong density implies weak density, since emptiness is non-inhabitation (whereas inhabitation is stronger than non-emptiness). The two notions of density are related dually to the corresponding notions of [[closed subspace]]: $A$ is strongly dense iff its weak closure is all of $X$, and weakly dense iff its strong closure is all of $X$. Note that the usual notion of density for [[sublocales]] $j(0)=0$ is an analogue of \emph{weak} density, and could be called such. There is also a notion of \emph{strong} density for sublocales. Since strong density refers to inhabited sets, one might expect strong density for sublocales to refer to [[positive elements]], and thus only be sensible for [[overt locales]]; but in fact it can be reformulated to make sense in all cases. \begin{udefn} A [[nucleus]] $j$ on a locale $X$ is \textbf{strongly dense} if $j(\hat{P})=\hat{P}$ for any [[truth value]] $P$, where $\hat{P} = \bigvee \{ X \mid P \}$. \end{udefn} With classical logic, every truth value is either $\top$ or $\bot$, and we have $\hat{\top}=X$ (and any nucleus satisfies $j(X)=X$) while $\hat{\bot}=0$. Thus classically strong and weak density coincide. To see that this is really a notion of strong density, we prove: \begin{utheorem} If $i:A\subseteq X$ is a sublocale such that $A$ and $X$ are both [[overt]], then $A$ is strongly dense if and only if for any positive open $U\in O(X)$, the intersection $A\cap U = i^*U \in O(A)$ is also positive. \end{utheorem} \begin{proof} First suppose $A$ is strongly dense, and let $U\in O(X)$ be positive. Let $P$ be the truth value of the statement ``$i^*U \in O(A)$ is positive''. We want to show that $P$ is true, for which it suffices to show that $\hat{P} = \bigvee \{ X \mid P \}$ is positive, since then its covering $\{ X \mid P \}$ would be inhabited and thus $P$ would be true. And since $U$ is positive, it suffices to show $U \subseteq \hat{P}$. Now since $A$ is strongly dense, $j_A(\hat{P}) = \hat{P}$, which is to say that $\hat{P} = i_*(i^*\hat{P})$. By adjointness, therefore, to show $U \subseteq \hat{P}$ it suffices to show $i^*U \subseteq i^*\hat{P} = \bigvee \{ A \mid P\}$. Now since $A$ is overt, $i^*U$ can be covered by positive opens, so it suffices to show that for any positive $V\subseteq i^*U$ we have $V\subseteq \bigvee \{ A \mid P\}$. But if $V\subseteq i^*U$ is positive, then $i^*U$ is also positive, i.e. $P$ is true, and thus $\bigvee \{ A \mid P\} = A$, which contains $V$. Now suppose conversely that for any positive $U\in O(X)$, $i^*U$ is also positive, and let $P$ be any truth value; we must show $i_* i^*\hat{P} \subseteq \hat{P}$. Since $X$ is overt, $i_* i^*\hat{P}$ can be covered by positive opens, so it suffices to show that for any positive $U\subseteq i_* i^*\hat{P}$ we have $U\subseteq \hat{P}$. But by adjointness, $U\subseteq i_* i^*\hat{P}$ is equivalent to $i^*U \subseteq i^*\hat{P}$, and by assumption $i^*U$ is also positive. Thus, $i^*\hat{P} = \bigvee \{ A \mid P\}$ is positive, which means that $P$ is true, and hence $\hat{P} = X$ and so $U\subseteq \hat{P}$. \end{proof} Since spatial locales are overt, and their positivity predicate coincides with inhabitedness, we have in particular: \begin{ucor} If $i:A\subseteq X$ is a subspace of a topological space, then $A$ is strongly dense as a topological subspace if and only if it is strongly dense as a sublocale. \end{ucor} Strong density for sublocales gives rise to a corresponding notion of [[weakly closed sublocale]]. It is also the specialization of the notion of [[fiberwise dense sublocale]] to the case of locale maps $X\to 1$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[dense subalgebra]] \item [[dense subtopos]] \item [[closed subspace]] \item [[nowhere dense set]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Strongly dense sublocales are discussed in \begin{itemize}% \item [[Sketches of an Elephant]], C1.1 and C1.2 \item [[Peter Johnstone]], \emph{A constructive `closed subgroup theorem' for localic groups and groupoids}, Cahiers de Topologie et G\'e{}om\'e{}trie Diff\'e{}rentielle Cat\'e{}goriques (1989), Volume: 30, Issue: 1, page 3-23 \href{https://eudml.org/doc/91430}{link} \item M. Jibladze and [[Peter Johnstone]], \emph{The frame of fibrewise closed nuclei}, Cahiers de Topologie et G\'e{}om\'e{}trie Diff\'e{}rentielle Cat\'e{}goriques (1991), Volume: 32, Issue: 2, page 99-112, \href{https://eudml.org/doc/91478}{link} \item [[Peter Johnstone]], \emph{Fiberwise separation axioms for locales} \end{itemize} [[!redirects dense subspace]] [[!redirects dense subspaces]] [[!redirects dense subset]] [[!redirects dense subsets]] [[!redirects dense set]] [[!redirects dense sets]] [[!redirects dense topological subspace]] [[!redirects dense topological subspaces]] [[!redirects strongly dense subspace]] [[!redirects strongly dense subspaces]] [[!redirects strongly dense subset]] [[!redirects strongly dense subsets]] [[!redirects strongly dense set]] [[!redirects strongly dense sets]] [[!redirects strongly dense topological subspace]] [[!redirects strongly dense topological subspaces]] [[!redirects weakly dense subspace]] [[!redirects weakly dense subspaces]] [[!redirects weakly dense subset]] [[!redirects weakly dense subsets]] [[!redirects weakly dense set]] [[!redirects weakly dense sets]] [[!redirects weakly dense topological subspace]] [[!redirects weakly dense topological subspaces]] [[!redirects dense sublocale]] [[!redirects dense sublocales]] [[!redirects dense nucleus]] [[!redirects dense nuclei]] [[!redirects strongly dense sublocale]] [[!redirects strongly dense sublocales]] [[!redirects strongly dense nucleus]] [[!redirects strongly dense nuclei]] [[!redirects weakly dense sublocale]] [[!redirects weakly dense sublocales]] [[!redirects weakly dense nucleus]] [[!redirects weakly dense nuclei]] \end{document}