\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{dense subtopos} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{Topos Theory}}\label{topos_theory} [[!include topos theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{remark}{Remark}\dotfill \pageref*{remark} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{some_basic_observations}{Some basic observations}\dotfill \pageref*{some_basic_observations} \linebreak \noindent\hyperlink{double_negation}{Relation to double-negation topology}\dotfill \pageref*{double_negation} \linebreak \noindent\hyperlink{the_denseclosedfactorization}{The (dense,closed)-factorization}\dotfill \pageref*{the_denseclosedfactorization} \linebreak \noindent\hyperlink{parallels_topology}{Some parallels to topology}\dotfill \pageref*{parallels_topology} \linebreak \noindent\hyperlink{example_i_twovalued_toposes}{Example I: two-valued toposes}\dotfill \pageref*{example_i_twovalued_toposes} \linebreak \noindent\hyperlink{example_ii_persistent_localizations}{Example II: persistent localizations}\dotfill \pageref*{example_ii_persistent_localizations} \linebreak \noindent\hyperlink{relation_to_aufhebung}{Relation to Aufhebung}\dotfill \pageref*{relation_to_aufhebung} \linebreak \noindent\hyperlink{example_essential_subtoposes_of_the_topos_of_globular_sets}{Example: essential subtoposes of the topos of globular sets}\dotfill \pageref*{example_essential_subtoposes_of_the_topos_of_globular_sets} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The concept of \textbf{dense subtopos} generalizes the concept of a [[dense subspace]] from topology to toposes. A \emph{[[subtopos]]} is \emph{dense} if it contains the [[initial object]] $\emptyset$ of the ambient [[topos]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $i:\mathcal{E}_j\hookrightarrow \mathcal{E}$ be a [[subtopos]] with corresponding [[Lawvere-Tierney topology]] $j$. $\mathcal{E}_j$ is called \emph{dense} if the following equivalent conditions hold: \begin{itemize}% \item $j\circ\bot=\bot$ (with $\bot: 1\to\Omega$ the classifying map of $\emptyset\rightarrowtail 1$). \item $\emptyset\rightarrowtail 1$ is $j$-closed. \item $\emptyset$ is a $j$-sheaf. \item the [[direct image]] satisfies $i_\ast (\emptyset)\simeq\emptyset$. \item the [[inverse image]] satisfies: from $i^\ast (Z)\simeq\emptyset$ follows $Z\simeq\emptyset$. \end{itemize} A topology $j$ satisfying these conditions is also called \emph{dense}. \hypertarget{remark}{}\subsubsection*{{Remark}}\label{remark} $j\circ\bot$ classifies the $j$-closure $\bar{\emptyset}$ of $\emptyset$ whence $j\circ\bot = \bot$ iff $\bar{\emptyset}=\emptyset$ i.e. $\emptyset\rightarrowtail 1$ is $j$-closed. Since $1$ is a $j$-sheaf for any topology $j$ and subobjects of $j$-sheaves in general are $j$-closed precisely when they are $j$-sheaves, this is equivalent to $\emptyset$ being a $j$-sheaf. Another way to say this is that $\emptyset$ is preserved by $i_\ast$. The equivalence between the last two formulations follows from the adjunction $i^\ast\dashv i_\ast$ and the [[strict initial object|strictness]] of $\emptyset$ in a topos: $id_{i_\ast(\emptyset)}$ corresponds under the adjunction to a map $i^\ast( i_\ast (\emptyset))\to \emptyset$ showing that $i^\ast (i_\ast(\emptyset))\simeq\emptyset$ in general. Conversely, $id_{i^\ast (Z)}$ corresponds to a map $Z\to i_\ast(i^\ast(Z))$ showing that $Z\simeq\emptyset$ provided $i^\ast(Z)\simeq\emptyset$ and $i_\ast(\emptyset)\simeq\emptyset$. In [[SGA4]] (p.430) another equivalent formulation is on offer, namely it suffices to check the last condition on [[subterminal object|subterminal objects]] $Z$ (because $i_\ast(\emptyset)$ is a subterminal in general since $i_\ast$ as a right adjoint preserves monos hence subterminals). An even more comprehensive list can be found in (\hyperlink{Caramello12}{Caramello 2012}, p.9). The last two conditions make sense not only for embeddings: general [[geometric morphisms]] fulfilling them are called [[dominant geometric morphism|dominant]]. So another way to express that $i:\mathcal{E}_j\hookrightarrow\mathcal{E}$ is a dense subtopos is to say that the inclusion $i$ is \textbf{dominant}. Notice that there is also a certain [[Grothendieck topology]] on small categories $\mathcal{C}$ called the [[dense topology]] whose corresponding [[Lawvere-Tierney topology]] on $Set^{\mathcal{C}^{op}}$ is dense in the above sense, and coincides with the [[double negation|double-negation topology]] $\neg\neg$ on $Set^{\mathcal{C}^{op}}$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{some_basic_observations}{}\subsubsection*{{Some basic observations}}\label{some_basic_observations} Of course, the composition $k\circ j$ of dense inclusions $j,k$ is again dense. Conversely, we have \begin{prop} \label{dense_factors}\hypertarget{dense_factors}{} Given the following commutative diagram \begin{displaymath} \itexarray{ \mathcal{E}_i &\overset{j}{\to}& \mathcal{E} \\ &{i}{\searrow}& \uparrow k \\ & & \mathcal{E}_k } \end{displaymath} where $i,j,k$ are subtopos inclusions. When $j$ is dense, then $i$ and $k$ are dense as well. \end{prop} \textbf{Proof}: Suppose $\emptyset =i^\ast (Z)$. Since $k$ is an inclusion we have that the counit $\epsilon:k^\ast k_\ast\to id_{\mathcal{E}_k}$ is a natural isomorphism whence $Z= k^\ast k_\ast (Z)$ and therefore \begin{displaymath} \emptyset =i^\ast(Z)=i^\ast(k^\ast k_\ast (Z))=i^\ast k^\ast (k_\ast (Z))=j^\ast(k_\ast(Z))\quad . \end{displaymath} From which $k_\ast(Z)=\emptyset$ since $j$ is dense by assumption. Then $Z=k^\ast k_\ast (Z)=k^\ast (\emptyset)=\emptyset$ since $k^\ast$ preserves colimits, in other words, we have shown that $i$ is dense. But from $k_\ast (Z)=\emptyset$ and $Z=\emptyset$ follows that $k$ is dense as well. $\qed$ Given two dense topologies $j_1$, $j_2$ on a topos $\mathcal{E}$, their join $j_1\vee j_2$ is again dense. This follows from the general fact that $Sh_{j_1\vee j_2}(\mathcal{E})$ corresponds to the meet, i.e. the intersection of the corresponding subtoposes $Sh_{j_1}(\mathcal{E})\cap Sh_{j_2}(\mathcal{E})$ in the [[lattice of subtoposes]], and this obviously contains $\emptyset_\mathcal{E}$ for $j_1$, $j_2$ dense. In other words, the intersection of two dense subtoposes is still dense! Somewhat surprisingly, this still holds if one takes the intersection of \emph{all} dense subtoposes, as the next section details. \hypertarget{double_negation}{}\subsubsection*{{Relation to double-negation topology}}\label{double_negation} For any topos $\mathcal{E}$, its \href{double+negation#DoubleNegationTopology}{double negation topology} gives the \emph{smallest} dense subtopos. This agrees with the \href{double+negation#double_negation_locale}{situation for locales} but contrasts with the [[dense subspace|situation for topological spaces]] where, in general, smallest dense subspaces do not exist. \begin{prop} \label{smallest_dense_subtopos}\hypertarget{smallest_dense_subtopos}{} $Sh_{\not\not}(\mathcal{E}) \hookrightarrow \mathcal{E}$ is the smallest dense subtopos. \end{prop} (\hyperlink{Johnstone02}{Johnstone, below Corollary 4.5.20}) In fact, dense topologies are characterized by their relation to $\neg\neg$: \begin{prop} \label{negdense}\hypertarget{negdense}{} Let $\mathcal{E}$ be a topos. A topology $j$ satisfies $j\le\neg\neg$ , i.e. $j$ is dense, iff $(\mathcal{E}_j)_{\not\not}=\mathcal{E}_{\not\not}$. \end{prop} (\hyperlink{BlassScedrov83}{Blass-Scedrov 1983}, p.19, \hyperlink{Caramello12}{Caramello 2012}, p.9, see also at \hyperlink{boolean_subtopos}{double negation}). From this and the fact that $\mathcal{E}$ is trivially dense, follows: \begin{prop} \label{prop_boolean}\hypertarget{prop_boolean}{} A topos $\mathcal{E}$ is [[Boolean topos|Boolean]] iff $\mathcal{E}$ has exactly one dense subtopos, namely $\mathcal{E}_{\neg\neg}=\mathcal{E}$. \end{prop} Notice that, though these results prevent a topos from having more than one \emph{dense} Boolean subtopos, nothing prevents a topos from having more than one \emph{Boolean} subtopos e.g. the [[Sierpinski topos]] $Set^{\to}$ has two non trivial ones that complement each other in the [[lattice of subtoposes]]. This example, incidentally, also shows that in the \hyperlink{negdense}{above proposition} just $(\mathcal{E}_j)_{\neg\neg}\cong\mathcal{E}_{\neg\neg}$ wouldn't do. \hypertarget{the_denseclosedfactorization}{}\subsubsection*{{The (dense,closed)-factorization}}\label{the_denseclosedfactorization} A [[geometric embedding]] of [[elementary toposes]] \begin{displaymath} Sh_j(\mathcal{E}) \hookrightarrow \mathcal{E} \end{displaymath} factors as \begin{displaymath} Sh_j(\mathcal{E}) \hookrightarrow Sh_{c(ext(j))}(\mathcal{E}) \hookrightarrow \mathcal{E} \end{displaymath} where $ext(j)$ (the ``exterior'' of $j$) denotes the $j$-closure of $\emptyset \rightarrowtail 1$ and \begin{displaymath} \bar j \coloneqq c(ext(j)) \end{displaymath} the [[closed subtopos|closed topology]] corresponding to the [[subterminal object]] $ext(j)$. Here the first inclusion exhibits a dense subtopos and the second a [[closed subtopos]]. This is the so called \emph{[[(dense,closed)-factorization]]} and implies e.g. that \emph{proper} dense subtoposes aren't closed. Dense inclusions participate also in the description of [[skeletal geometric morphism|skeletal inclusions]] as the closure of [[open subtopos|open inclusions]] under composition with dense inclusions. \hypertarget{parallels_topology}{}\subsubsection*{{Some parallels to topology}}\label{parallels_topology} The above terminology suggests to view a \emph{dense subtopos} as one with an \emph{empty exterior}. This analogy to topology is pursued further in (\hyperlink{SGA4}{SGA4}, p.462) where a dense subtopos is characterized as a subtopos $Sh_j(\mathcal{E})$ whose `exterior' $Ext(Sh_j(\mathcal{E}))$ (i.e. the [[open subtopos]] that corresponds to the [[subterminal object]] $ext(j)$) is trivial and whose `closure' $Cl(Sh_j(\mathcal{E})):=Sh_{c(ext(j))}(\mathcal{E})$ (i.e. the [[closed subtopos]] corresponding to $ext(j)$) coincides with the `whole space' $\mathcal{E}$. Let's have a look at some of the details: Due to the construction of [[open subtopos|open subtoposes]] we know that the objects of $Ext(Sh_j(\mathcal{E}))$ have the form $X^{ext(j)}$ for some $X\in\mathcal{E}$. Hence the exterior is trivial, i.e. $X^{ext(j)}=1$ for all $X\in\mathcal{E}$, precisely when $\bar\emptyset =ext(j)\simeq \emptyset$ which means that $Sh_j(\mathcal{E})$ is dense. By construction $Cl(Sh_j(\mathcal{E}))$ is the [[complement]] of $Ext(Sh_j(\mathcal{E}))$ in the lattice of subtoposes hence $Cl(Sh_j(\mathcal{E}))=\mathcal{E}$ in case the latter is trivial. This follows also directly from the description of objects in $Cl(Sh_j(\mathcal{E}))$ as those objects $X\in\mathcal{E}$ with $X\times ext(j)\cong ext(j)$. E.g. let $Sh_k(\mathcal{E})$ be a subtopos that has a trivial intersection with a non-trivial open subtopos $Sh_o(\mathcal{E})$. Then $Sh_k(\mathcal{E})$ is contained in the (closed) complement of $Sh_o(\mathcal{E})$ hence $Cl(Sh_k(\mathcal{E}))\neq \mathcal{E}$ and we see that $Sh_k(\mathcal{E})$ cannot be dense: we have recuperated the familiar fact from point-set topology that a [[dense subspace|dense subset]] intersects all non-trivial open sets non-trivially. Another easy result in this vein is \begin{prop} \label{}\hypertarget{}{} Let $i:Sh_j(\mathcal{E})\hookrightarrow\mathcal{E}$ be a dense subtopos that is [[connected object|connected]] in the sense that $1$ is indecomposable: if $W\coprod Z=1$ then $W=\emptyset$ or $Z=\emptyset$. Then $\mathcal{E}$ is connected as well. \end{prop} \textbf{Proof}: Let $X\coprod Y = 1$ be a decomposition of $1$ in $\mathcal{E}$. Since $i^\ast$ is a left exact left adjoint, it preserves coproducts and the terminal object and $i^\ast(X)\coprod i^\ast (Y)$ is therefore a decomposition of $1$ in $Sh_j(\mathcal{E})$ hence trivial by assumption. Let's say $i^\ast(X)\simeq\emptyset$ but $Sh_j(\mathcal{E})$ is dense and therefore we can conclude $X\simeq\emptyset$ hence $X\coprod Y = 1$ is trivial as well. $\qed$ \hypertarget{example_i_twovalued_toposes}{}\subsubsection*{{Example I: two-valued toposes}}\label{example_i_twovalued_toposes} Presheaf toposes $Set^{M^{op}}$ of actions of a monoid $M$ are classical examples of toposes whose truth value objects $\Omega$ have exactly two global points $1\to\Omega$ without the toposes being necessarily Boolean. In fact they are Boolean precisely when $M$ is a group. As the next proposition shows, they are also instances of toposes in which only the degenerate subtopos fails to be dense: \begin{prop} \label{}\hypertarget{}{} The non-degenerate subtoposes $Sh_j(\mathcal{E})$ of a [[two-valued topos]] $\mathcal{E}$ are precisely the dense subtoposes of $\mathcal{E}$. \end{prop} \textbf{Proof}: Truth values $1\to\Omega$ correspond precisely to subobjects of $1$. Hence the $j$-closure $ext(j)$ of $\emptyset\rightarrowtail 1$ is either $\emptyset$ or $1$. In the first case, $Sh_j(\mathcal{E})$ is dense, in the second, from $X\times 1=1$ for $X\in Cl(Sh_j(\mathcal{E}))$ follows triviality. $\qed$ Combining this with the \hyperlink{prop_boolean}{above} shows that \emph{two-valued and Boolean toposes are opposite extremes} when it comes to dense subtoposes and the following observation (cf. \hyperlink{Caramello09}{Caramello (2009)}; prop. 10.1) follows immediately: \begin{prop} \label{}\hypertarget{}{} A topos $\mathcal{E}$ that is two-valued and Boolean has no non-trivial subtoposes. $\qed$ \end{prop} In other words, two-valued Boolean toposes are atoms in the lattice of subtoposes. Notice that this applies e.g. to well-pointed toposes. \hypertarget{example_ii_persistent_localizations}{}\subsubsection*{{Example II: persistent localizations}}\label{example_ii_persistent_localizations} Recall that a [[persistent localization]] is given by a [[Lawvere-Tierney topology]] $j$ with the property that every $j$-separated object is a $j$-sheaf. But separated objects are closed under taking subobjects and therefore in the case of persistent $j$, subobjects of $j$-sheaves are themselves $j$-sheaves. In particular, this applies to $\emptyset\rightarrowtail 1$, since $1$ is always a sheaf. Whence $\emptyset$ is a $j$-sheaf and we see that \textbf{persistent localizations are dense}. This includes e.g. `quintessential localizations' aka [[quality type|quality types]]. This observation is due to \hyperlink{Johnstone96}{Johnstone (1996)}. By the \hyperlink{prop_boolean}{above proposition} it follows immediately that every persistent localization of a Boolean topos is trivial. \hypertarget{relation_to_aufhebung}{}\subsubsection*{{Relation to Aufhebung}}\label{relation_to_aufhebung} Notice that, since the [[localization]] $L$ corresponding to a subtopos is a [[left exact functor]], all subtoposes necessarily contain the [[terminal object]] $\ast$ of the ambient topos. Moreover, the [[idempotent comonad]] and [[idempotent monad]] constant on the [[initial object]] and [[terminal object]], respectively, are [[adjoint functor|adjoint]] to each other (forming an [[adjoint modality]]). Denoting by ``$\vee$'' the inclusion of [[modal objects]], then the general situation for any subtopos localized on by $L$ is depicted by \begin{displaymath} \itexarray{ && L \\ && \vee \\ \emptyset &\dashv& \ast } \,. \end{displaymath} In view of this, the subtopos being dense says that not only $\ast$, but this whole [[adjoint modality]] that it participates in sits inside the subtopos. [[Lawvere]] had proposed to call this situation \textbf{resolution} or (a special minimal version of it) \emph{[[Aufhebung]]} of the [[unity of opposites]] expressed by $\emptyset \dashv \ast$ (``[[becoming]]''). In other words, for an [[level| essential subtopos]] \emph{being dense is equivalent to resolve} $\emptyset \dashv \ast$ in the Hegelian calculus of [[level of a topos|levels]]! \hypertarget{example_essential_subtoposes_of_the_topos_of_globular_sets}{}\paragraph*{{Example: essential subtoposes of the topos of globular sets}}\label{example_essential_subtoposes_of_the_topos_of_globular_sets} \hyperlink{KRRZ11}{Kennett-Riehl-Roy-Zaks (2011)} show that in the [[gros topos]] $Set^{\mathcal{G}^{op}}$ of reflexive [[globular sets]] essential subtoposes correspond to [[n-truncation modality|dimensional truncations]] (plus the level ${Set^{\mathcal{G}^{op}}}$ `at infinity'). Then [[level]] $n+1$ is the Aufhebung of $n$ starting from $\emptyset\dashv\ast$ at level $0$. In general, the Aufhebung $\bar{l}$ of a level $l$ resolves all the levels that $l$ resolves. Therefore in $Set^{\mathcal{G}^{op}}$ all essential subtoposes (above 0) resolve $\emptyset\dashv\ast$ and hence are \emph{dense}! \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[dense subspace]] \item [[(dense,closed)-factorization]] \item [[dominant geometric morphism]] \item [[skeletal geometric morphism]] \item [[dense topology]] \item [[double negation]] \item [[dense subcategory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[M. Artin]], [[A. Grothendieck]], [[J. L. Verdier]], \emph{Th\'e{}orie des Topos et Cohomologie Etale des Sch\'e{}mas ([[SGA4]])}, LNM \textbf{269} Springer Heidelberg 1972. (pp.429-430, 462) \item [[Andreas Blass]], Andrej Scedrov, \emph{Boolean Classifying Topoi} , JPAA \textbf{28} (1983) pp.15-30. \item [[Olivia Caramello]], \emph{Lattices of theories} , arXiv:0905.0299 (2009). (\href{http://arxiv.org/abs/0905.0299}{abstract}) \item [[Olivia Caramello]], \emph{Topologies for intermediate logics} , arXiv:1205.2547 (2012). (\href{http://arxiv.org/abs/1205.2547}{abstract}) \item [[Peter Johnstone]], \emph{Remarks on Quintessential and Persistent Localizations} , TAC \textbf{2} no.8 (1996) pp.90-99. (\href{http://www.tac.mta.ca/tac/volumes/1996/n8/n8.pdf}{pdf}) \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]] I}, Oxford UP 2002. (pp.211,219-220) \item C. Kennett, [[Emily Riehl|E. Riehl]], M. Roy, M. Zaks, \emph{Levels in the toposes of simplicial sets and cubical sets} , JPAA \textbf{215} no.5 (2011) pp.949-961. (preprint as \href{http://arxiv.org/abs/1003.5944}{arXiv:1003.5944}) \end{itemize} [[!redirects dense subtoposes]] \end{document}