\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{dependent product} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{dependent_products}{}\section*{{Dependent products}}\label{dependent_products} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{RelationToSpacesOfSections}{Relation to spaces of sections}\dotfill \pageref*{RelationToSpacesOfSections} \linebreak \noindent\hyperlink{relation_to_exponential_objects__internal_homs}{Relation to exponential objects / internal homs}\dotfill \pageref*{relation_to_exponential_objects__internal_homs} \linebreak \noindent\hyperlink{relation_to_type_theory_and_quantification_in_logic}{Relation to type theory and quantification in logic}\dotfill \pageref*{relation_to_type_theory_and_quantification_in_logic} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{in_toposes}{In toposes}\dotfill \pageref*{in_toposes} \linebreak \noindent\hyperlink{AlongDeloopingsOfGroupHomomorphisms}{Along $\mathbf{B}H \to \mathbf{B}G$}\dotfill \pageref*{AlongDeloopingsOfGroupHomomorphisms} \linebreak \noindent\hyperlink{AlongPointInclusionIntoBG}{Along $\ast \to \mathbf{B}G$}\dotfill \pageref*{AlongPointInclusionIntoBG} \linebreak \noindent\hyperlink{along__3}{Along $V/G \to \mathbf{B}G$}\dotfill \pageref*{along__3} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{dependent product} is a [[universal construction]] in [[category theory]]. It generalizes the [[internal hom]], and hence indexed [[products]], to the situation where the codomain may \emph{depend} on the domain, hence it forms \emph{[[sections]]} of a [[bundle]]. The [[duality|dual]] concept is that of \emph{[[dependent sum]]}. The concept of [[cartesian product]] of [[sets]] makes sense for any [[family of sets]], while the [[category theory|category-theoretic]] [[product]] makes sense for any family of objects. In each case, however, the family is indexed by a [[set]]; how can we get a purely category-theoretic product indexed by an object? First we need to describe a family of objects indexed by an object; it's common to interpret this as a [[bundle]], that is an arbitrary morphism $\pi: E \to A$. (In [[Set]], $A$ would be the index set of the family, and the [[fiber]] of the bundle over an element $x$ of $A$ would be the set indexed by $x$. Conversely, given a family of sets, $E$ can be constructed as its [[disjoint union]].) In these terms, the cartesian product of the family of sets is the set $S$ of (global) [[section]]s of the bundle. This set comes equipped with an evaluation map $ev: S \times A \to E$ such that \begin{displaymath} S \times A \stackrel{ev}\to E \stackrel{\pi}\to A \end{displaymath} equals the usual product projection from $S \times A$ to $A$, so $ev$ and $\pi$ are both morphisms in the [[over category]] $Set/A$. The [[universal property]] of $S$ is that, given any set $T$ and morphism $T \times A \to E$ in $Set/A$, there's a unique map $T \to S$ that makes everything commute. In other words, $S$ and $ev$ define an [[adjoint functor|adjunction]] from $Set$ to $Set/A$ in which taking the product with $A$ is the left adjoint and applying this universal property is the right adjoint. This is the basis for the definition below, but we add one further level of generality: We realise that $Set$ is secretly $Set/*$, where $*$ is the one-point set (the [[final object]]), and move everything from $Set$ to an arbitrary over category $\mathcal{C}/I$. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} Let $\mathcal{C}$ be a [[category]], and $g\colon B \to A$ a [[morphism]] in $\mathcal{C}$, such that [[pullbacks]] along this morphism exist. These then constitute the [[base change]] [[functor]] between the corresponding [[slice categories]] \begin{displaymath} g^* \colon \mathcal{C}_{/A} \to \mathcal{C}_{/B} \,. \end{displaymath} \begin{defn} \label{}\hypertarget{}{} The \textbf{dependent product} along $g$ is, if it exists, the [[right adjoint]] functor $\prod_g \colon \mathcal{C}_{/B} \to \mathcal{C}_{/A}$ to the [[base change]] along $g$ \begin{displaymath} (g^* \dashv \prod_g) \colon \mathcal{C}_{/B} \stackrel{\overset{g^* }{\leftarrow}}{\underset{\prod_g}{\to}} \mathcal{C}_{/A} \,. \end{displaymath} \end{defn} So a category with all dependent products is necessarily a category with all [[pullbacks]]. \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{RelationToSpacesOfSections}{}\subsubsection*{{Relation to spaces of sections}}\label{RelationToSpacesOfSections} \begin{prop} \label{RelationToSections}\hypertarget{RelationToSections}{} Let $\mathcal{C}$ be a [[cartesian closed category]] with all [[limit]]s and note that $\mathcal{C}_{/\ast}\cong\mathcal{C}$. Let $X \in C$ be any object and identify it with the terminal morphism $X\to *$. Then the dependent product functor \begin{displaymath} \mathcal{C}_{/X} \underoverset {\underset{\prod_{x \in X}}{\longrightarrow}} {\overset{- \times X}{\longleftarrow}} {\bot} \mathcal{C} \end{displaymath} sends [[bundles]] $P \to X$ to their [[space of sections|object of sections]]. \begin{displaymath} \prod_{x \in X} P_x \simeq \Gamma_X(P) := [X,P] \times_{[X,X]} \{id\} \,. \end{displaymath} \end{prop} \begin{proof} We check the characterizing [[natural isomorphism]] for the adjunction: For every $A \in \mathcal{C}$ we have the following sequence of natural isos: \begin{displaymath} \begin{aligned} \mathcal{C}_{/X}(A \times X, P \to X) &= \mathcal{C}(A \times X, P ) \times_{\mathcal{C}(A \times X, X)} \{p_2\} \\ & = \mathcal{C}(A, [X,P]) \times_{\mathcal{C}(A,[X,X])} \{\tilde p_2\} \\ &= \mathcal{C}(A, [X,P] \times_{[X,X]} \{Id\}) \\ &= \mathcal{C}(A, \Gamma_X(P)) \end{aligned} \,. \end{displaymath} \end{proof} \begin{remark} \label{}\hypertarget{}{} This statement and its proof remain valid in [[homotopy theory]]. More in detail, if $\mathcal{C}$ is a [[simplicial model category]], $X$, $A$ and $X \times A$ are cofibrant, $P$ and $X$ are fibrant and $P \to X$ is a [[fibration]], then $\Gamma_X(A)$ as above is the homotopy-correct [[derived hom-space|derived section space]]. \end{remark} \hypertarget{relation_to_exponential_objects__internal_homs}{}\subsubsection*{{Relation to exponential objects / internal homs}}\label{relation_to_exponential_objects__internal_homs} As a special case of prop. \ref{RelationToSections} one obtains [[exponential objects]]/[[internal homs]]. Let $\mathcal{C}$ have a [[terminal object]] $* \in \mathcal{C}$. Let $A$ and $X$ in $\mathcal{C}$ be objects and let $A \colon A \to *$ and $X \colon X \to *$ be the terminal morphisms. \begin{cor} \label{}\hypertarget{}{} The dependent product along $X$ of the arrow obtained by base change of $A$ along $X$ is the exponential object $[X,A]$: \begin{displaymath} \prod_{X} X^* A \simeq [X,A] \in \mathcal{C} \,. \end{displaymath} \end{cor} \begin{remark} \label{}\hypertarget{}{} This is essentially a [[categorification|categorified]] version of the familiar fact that the product $n\cdot m$ of two [[natural numbers]] can be identified with the sum $\overset{n}{\overbrace{m+\dots +m}}$ of $n$ copies of $m$. \end{remark} \begin{example} \label{}\hypertarget{}{} Consider the chain of equivalences from $[X,A]$ to $\prod_{X} X^* A$ in [[Set]]: Firstly, the exponential object $[X,A]$ is characterized in $[Y,[X,A]]$ as right adjoint to $[Y\times X,A]$. Secondly, the elements $\theta$ of $[Y\times X,A]$ are in turn in bijection with those functions $(y,x)\mapsto (\theta(y,x),x)$ from $[Y\times X,A\times X]$, that leave the second component fixed. The condition just stated is the definition of arrows in the overcategory ${Set}/X$, between the right projections out of $Y\times X$ resp. $A\times X$. If we identify objects $Z\in{Set}$ with their terminal morphisms $Z:Z\to *$ in ${Set}/*$, those two right projections are the pullbacks $X^* Y$ and $X^* A$, respectively. Thirdly, thus, the subset of $[Y\times X,A\times X]$ we are interested in corresponds to $[X^* Y,X^* A]$ in ${Set}/X$. Finally, the right adjoint to $X^*$ is a functor $\prod_{X}$ from ${Set}/X$ to ${Set}/*$, such that $[X^* Y,X^* A]\simeq [Y, \prod_{X} X^* A]$. Hence $\prod_{X} X^* A$ must correspond to $[X,A]$. \end{example} \hypertarget{relation_to_type_theory_and_quantification_in_logic}{}\subsubsection*{{Relation to type theory and quantification in logic}}\label{relation_to_type_theory_and_quantification_in_logic} The dependent product is the [[categorical semantics]] of what in [[type theory]] is the [[type formation|formation]] of [[dependent product types]]. Under [[propositions as types]] this corresponds to [[universal quantification]]. [[!include dependent product natural deduction - table]] \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{in_toposes}{}\subsubsection*{{In toposes}}\label{in_toposes} Dependent products (and sums) exist in any [[topos]]: \begin{uprop} For $C$ a topos and $f : A \to I$ any morphism in $C$, both the left adjoint $\sum_f : C/A \to C/I$ as well as the right adjoint $\prod_f: C/A \to C/I$ to $f^*: C/I \to C/A$ exist. Moreover, $f^*$ preserves the [[subobject classifier]] and [[internal hom]]s. \end{uprop} This is (\hyperlink{MacLaneMoerdijk}{MacLaneMoerdijk, theorem 2 in section IV, 7}). The dependent product plays a role in the definition of [[universe in a topos]]. \hypertarget{AlongDeloopingsOfGroupHomomorphisms}{}\subsubsection*{{Along $\mathbf{B}H \to \mathbf{B}G$}}\label{AlongDeloopingsOfGroupHomomorphisms} For $\mathbf{H}$ an [[(∞,1)-topos]] and $G$ an group object in $\mathbf{H}$ (an [[∞-group]]), then the [[slice (∞,1)-topos]] over its [[delooping]] may be identified with the [[(∞,1)-category]] of $G$-[[∞-actions]] (see there for more): \begin{displaymath} Act_G(\mathbf{H}) \simeq \mathbf{H}_{/\mathbf{B}G} \,. \end{displaymath} Under this identification, then dependent product along a morphism of the form $\mathbf{B}H \to \mathbf{B}G$ (corresponding to an [[∞-group]] homomorphism $H \to G$) corresponds to forming [[coinduced representations]]. \hypertarget{AlongPointInclusionIntoBG}{}\subsubsection*{{Along $\ast \to \mathbf{B}G$}}\label{AlongPointInclusionIntoBG} As the special case of the \hyperlink{AlongDeloopingsOfGroupHomomorphisms}{above} for $H = 1$ the trivial group we obtain the following: \begin{prop} \label{GeneralReduction}\hypertarget{GeneralReduction}{} Let $\mathbf{H}$ be any [[(∞,1)-topos]] and let $G$ be a group object in $\mathbf{H}$ (an [[∞-group]]). Then the dependent product along the canonical point inclusion \begin{displaymath} i \;\colon\; \ast \to \mathbf{B}G \end{displaymath} into the [[delooping]] of $G$ takes the following form: There is a pair of [[adjoint ∞-functors]] of the form \begin{displaymath} \mathbf{H} \underoverset { \underset{\underset{i}{\prod} \simeq [G,-]/G}{\longrightarrow}} { \overset{i^\ast \simeq hofib}{\longleftarrow}} {\bot} \mathbf{H}_{/\mathbf{B}G} \,, \end{displaymath} where \begin{itemize}% \item $hofib$ denotes the operation of taking the [[homotopy fiber]] of a map to $\mathbf{B}G$ over the canonical basepoint; \item $[G,-]$ denotes the [[internal hom]] in $\mathbf{H}$; \item $[G,-]/G$ denotes the [[homotopy quotient]] by the [[conjugation action|conjugation]] [[∞-action]] for $G$ equipped with its canonical [[∞-action]] by left multiplication and the argument regarded as equipped with its trivial $G$-$\infty$-action (for $G = S^1$ then this is the [[cyclic loop space]] construction). \end{itemize} Hence for \begin{itemize}% \item $\hat X \to X$ a $G$-[[principal ∞-bundle]] \item $A$ a [[coefficient]] object, such as for some [[differential cohomology|differential]] [[generalized cohomology theory]] \end{itemize} then there is a [[natural equivalence]] \begin{displaymath} \underset{ \text{original} \atop \text{fluxes} }{ \underbrace{ \mathbf{H}(\hat X\;,\; A) } } \;\; \underoverset {\underset{oxidation}{\longleftarrow}} {\overset{reduction}{\longrightarrow}} {\simeq} \;\; \underset{ \text{doubly} \atop { \text{dimensionally reduced} \atop \text{fluxes} } }{ \underbrace{ \mathbf{H}(X \;,\; [G,A]/G) } } \end{displaymath} given by \begin{displaymath} \left( \hat X \longrightarrow A \right) \;\;\; \leftrightarrow \;\;\; \left( \itexarray{ X && \longrightarrow && [G,A]/G \\ & \searrow && \swarrow \\ && \mathbf{B}G } \right) \end{displaymath} \end{prop} \begin{proof} The statement that $i^\ast \simeq hofib$ follows immediately by the definitions. What we need to show is that the [[dependent product]] along $i$ is given as claimed. To that end, first observe that the [[conjugation action]] on $[G,X]$ is the [[internal hom]] in the [[(∞,1)-category]] of $G$-[[∞-actions]] $Act_G(\mathbf{H})$. Under the [[equivalence of (∞,1)-categories]] \begin{displaymath} Act_G(\mathbf{H}) \simeq \mathbf{H}_{/\mathbf{B}G} \end{displaymath} (from \href{geometry+of+physics+-+fundamental+super+p-branes#NSS12}{NSS 12}) then $G$ with its canonical [[∞-action]] is $(\ast \to \mathbf{B}G)$ and $X$ with the trivial action is $(X \times \mathbf{B}G \to \mathbf{B}G)$. Hence \begin{displaymath} [G,X]/G \simeq [\ast, X \times \mathbf{B}G]_{\mathbf{B}G} \;\;\;\;\; \in \mathbf{H}_{/\mathbf{B}G} \,. \end{displaymath} So far this is the very definition of what $[G,X]/G \in \mathbf{H}_{/\mathbf{B}G}$ is to mean in the first place. But now since the [[slice (∞,1)-topos]] $\mathbf{H}_{/\mathbf{B}G}$ is itself [[cartesian closed (infinity,1)-category|cartesian closed]], via \begin{displaymath} E \times_{\mathbf{B}G}(-) \;\;\; \dashv \;\;\; [E,-]_{\mathbf{B}G} \end{displaymath} it is immediate that there is the following sequence of [[natural equivalences]] \begin{displaymath} \begin{aligned} \mathbf{H}_{/\mathbf{B}G}(Y, [G,X]/G) & \simeq \mathbf{H}_{/\mathbf{B}G}(Y, [\ast, X \times \mathbf{B}G]_{\mathbf{B}G}) \\ & \simeq \mathbf{H}_{/\mathbf{B}G}( Y \times_{\mathbf{B}G} \ast, \underset{p^\ast X}{\underbrace{X \times \mathbf{B}G }} ) \\ & \simeq \mathbf{H}( \underset{hofib(Y)}{\underbrace{p_!(Y \times_{\mathbf{B}G} \ast)}}, X ) \\ & \simeq \mathbf{H}(hofib(Y),X) \end{aligned} \end{displaymath} Here $p \colon \mathbf{B}G \to \ast$ denotes the terminal morphism and $p_! \dashv p^\ast$ denotes the [[base change]] along it. \end{proof} See also at \emph{[[double dimensional reduction]]} for more on this. \hypertarget{along__3}{}\subsubsection*{{Along $V/G \to \mathbf{B}G$}}\label{along__3} More generally: \begin{prop} \label{RightBaseChangeAlongUniversalFiberBundleProjection}\hypertarget{RightBaseChangeAlongUniversalFiberBundleProjection}{} Let $\mathbf{H}$ be an [[(∞,1)-topos]] and $G \in Grp(\mathbf{H})$ an [[∞-group]]. Let moreover $V \in \mathbf{H}$ be an object equipped with a $G$-[[∞-action]] $\rho$, equivalently (by the discussion there) a [[homotopy fiber sequence]] of the form \begin{displaymath} \itexarray{ V \\ \downarrow \\ V/G & \overset{p_\rho}{\longrightarrow}& \mathbf{B}G } \end{displaymath} Then \begin{enumerate}% \item pullback along $p_\rho$ is the operation that assigns to a morphism $c \colon X \to \mathbf{B}G$ the $V$-[[fiber ∞-bundle]] which is [[associated ∞-bundle|associated]] via $\rho$ to the $G$-[[principal ∞-bundle]] $P_c$ classified by $c$: \begin{displaymath} (p_\rho)^\ast \;\colon\; c \mapsto P_c \times_G V \end{displaymath} \item the right base change along $p_\rho$ is given on objects of the form $X \times (V/G)$ by \begin{displaymath} (p_\rho)_\ast \;\colon\; X \times (V/G) \;\mapsto\; [V,X]/G \end{displaymath} \end{enumerate} \end{prop} \begin{proof} The first statement is \href{https://ncatlab.org/schreiber/show/Principal+%E2%88%9E-bundles+--+theory%2C+presentations+and+applications}{NSS 12, prop. 4.6}. The second statement follows as in the proof of prop. \ref{CyclicLoopSpace}: Let \begin{displaymath} \left( \itexarray{ Y \\ \downarrow^{\mathrlap{c}} \\ \mathbf{B}G } \right) \;\in\; \mathbf{H}_{/\mathbf{B}G} \end{displaymath} be any object, then there is the following sequence of [[natural equivalences]] \begin{displaymath} \begin{aligned} \mathbf{H}_{/\mathbf{B}G}(Y, [V,X]/G) & \simeq \mathbf{H}_{/\mathbf{B}G}(Y, [V/G, X \times \mathbf{B}G]_{\mathbf{B}G}) \\ & \simeq \mathbf{H}_{/\mathbf{B}G}( Y \times_{\mathbf{B}G} (V/G), \underset{p^\ast X}{\underbrace{X \times \mathbf{B}G }} ) \\ & \simeq \mathbf{H}_{/\mathbf{B}G} ( (p_\rho)_!( P_c \times_G (V/G) ), p^\ast X ) \\ & \simeq \mathbf{H}_{/(V/G)} ( P_c \times_G V, (p_\rho)^\ast p^\ast X ) \\ & \simeq \mathbf{H}_{/(V/G)}(P_c \times_G V, X \times (V/G)) \end{aligned} \end{displaymath} where again \begin{displaymath} p \colon \mathbf{B}G \to \ast \,. \end{displaymath} \end{proof} \begin{example} \label{SymmetricPowers}\hypertarget{SymmetricPowers}{} \textbf{(symmetric powers)} Let \begin{displaymath} G = \Sigma(n) \in Grp(Set) \hookrightarrow Grp(\infty Grpd) \overset{LConst}{\longrightarrow} \mathbf{H} \end{displaymath} be the [[symmetric group]] on $n$ elements, and \begin{displaymath} V = \{1, \cdots, n\} \in Set \hookrightarrow \infty Grpd \overset{LConst}{\longrightarrow} \mathbf{H} \end{displaymath} the $n$-element [[set]] ([[h-set]]) equipped with the canonical $\Sigma(n)$-[[action]]. Then prop. \ref{RightBaseChangeAlongUniversalFiberBundleProjection} says that right base change of any $p_\rho^\ast p^\ast X$ along \begin{displaymath} \{1, \cdots, n\}/\Sigma(n) \longrightarrow \mathbf{B}\Sigma(n) \end{displaymath} is equivalently the $n$th [[symmetric power]] of $X$ \begin{displaymath} [\{1,\cdots, n\},X]/\Sigma(n) \simeq (X^n)/\Sigma(n) \,. \end{displaymath} \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[product]], [[coproduct]] \item [[Kan extension]] \item [[internal limit]] \item [[base change]] \begin{itemize}% \item [[dependent sum]], \textbf{dependent product} \item [[dependent sum type]], [[dependent product type]] \item [[necessity]], [[possibility]], [[reader monad]], [[writer comonad]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Standard textbook accounts include section A1.5.3 of \begin{itemize}% \item [[Peter Johnstone]], \emph{[[Sketches of an Elephant]]} \end{itemize} and section IV of \begin{itemize}% \item [[Saunders MacLane]], [[Ieke Moerdijk]], \emph{[[Sheaves in Geometry and Logic]]} \end{itemize} [[!redirects dependent product]] [[!redirects dependent products]] \end{document}