\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{derived critical locus} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{BasicDgGeometry}{Basic dg-geometry}\dotfill \pageref*{BasicDgGeometry} \linebreak \noindent\hyperlink{formal_cotangent_bundle}{Formal cotangent bundle}\dotfill \pageref*{formal_cotangent_bundle} \linebreak \noindent\hyperlink{derived_critical_locus}{Derived critical locus}\dotfill \pageref*{derived_critical_locus} \linebreak \noindent\hyperlink{ComparisonToBVBRSTExample}{BV-BRST complex}\dotfill \pageref*{ComparisonToBVBRSTExample} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The concept of \emph{derived critical locus} is the refinement of the notion of [[critical locus]] from [[geometry]] to [[derived geometry]]. The formal duals to derived critical loci are described by [[BV-BRST formalism]]. \hypertarget{details}{}\subsection*{{Details}}\label{details} The following is a basic setup in [[dg-geometry]] aimed at exhibiting the (formal dual of) the [[BV-BRST complex]] as the derived critical locus of (the formal dual of) the [[BRST complex]] (the example \hyperlink{ComparisonToBVBRSTExample}{below}) \hypertarget{BasicDgGeometry}{}\subsubsection*{{Basic dg-geometry}}\label{BasicDgGeometry} Let $k$ be a [[field]] of [[characteristic zero]]. Write $dgcAlg_k$ for the [[category]] of unbounded cochain [[differential graded-commutative algebras]] (dgc-algebras) over $k$. An object in the [[opposite category]] \begin{displaymath} C \in cdgAlg_k^{op} \end{displaymath} we may regard as an affine space in [[dg-geometry]], and hence we write \begin{displaymath} \mathcal{O}(C) \in cdgAlg_k \end{displaymath} for the corresponding dgc-algebra. Let $\mathcal{O}(C)$[[Mod]] be the [[category of dg-modules]] over $\mathcal{O}(C)$ equipped with the standard [[model structure on dg-modules]]. \begin{defn} \label{OCDGCAlgebras}\hypertarget{OCDGCAlgebras}{} \textbf{([[dgc-algebras]] over $\mathcal{O}(C)$)} Write \begin{displaymath} \begin{aligned} cdgAlg_{\mathcal{O}(C)} & \coloneqq CMon(\mathcal{O}(C) Mod) \\ & \simeq \mathcal{O}(C)/_{cdgAlg_k} \end{aligned} \end{displaymath} for the [[category of monoids|category of commutative monoids]] in $\mathcal{O}(C)$-modules, equivalently the [[coslice category]] of $cdgAlg_k$ under $\mathcal{O}(C)$. \end{defn} \begin{prop} \label{SymOCAdjunction}\hypertarget{SymOCAdjunction}{} There is a [[model category]] structure on $cdgAlg_{\mathcal{O}(C)}$ (def. \ref{OCDGCAlgebras}) whose fibrations and weak equivalences are those of the underlying $\mathcal{O}(C)$-modules such that the [[free-forgetful adjunction]] \begin{displaymath} cdgAlg_{\mathcal{O}(C)} \underoverset {\underset{U}{\longrightarrow}} {\overset{Sym_{\mathcal{O}(C)}}{\longleftarrow}} {\bot} \mathcal{O}(C) Mod \end{displaymath} is a [[Quillen adjunction]]. This is \begin{enumerate}% \item [[combinatorial model category|combinatorial]]; \item [[proper model category|proper]]. \end{enumerate} \end{prop} \begin{proof} This follows with the general discussion at \emph{[[dg-geometry]]}. We indicate how to see it directly. We observe that the adjunction exhibits the [[transferred model structure]] on the left. By the statement discussed there, it is sufficient to check that \begin{enumerate}% \item $\mathcal{O}(C) Mod$ is a [[cofibrantly generated model category]]. This follows because the [[nLab:model structure on dg-modules]] (as discussed there) is itself transferred along \begin{displaymath} U' \colon \mathcal{O}(C) Mod \to Ch^\bullet(k) \end{displaymath} from the cofibrantly generated [[model structure on chain complexes|model structure on cochain complexes]]. \item $U$ preserves [[filtered colimits]]. This follows from the general fact $U : CMon(\mathcal{C}) \to \mathcal{C}$ creates filtered colimits for $\mathcal{C}$ closed symmetric monoidal (see \href{category+of+monoids#FilteredColimits}{there}) and that $A Mod$ is [[closed monoidal category|closed]] [[symmetric monoidal category|symmetric monoidal]] (see \href{model+structure+on+dg-modules#Properties}{there}). To check this explicitly: Let $A_\bullet \colon D \to cdgAlg_k$ be a [[filtered category|filtered diagram]]. We claim that there is a unique way to lift the underlying colimit $\lim_\to U A_\bullet$ to a dg-algebra cocone: for $a \in A_i \to \lim_\to U A_\bullet$ and $b \in A_j \to \lim_\to U A_\bullet$ there is by the assumption that $D$ is filtered a $A_i \to A_l \leftarrow A_j$. Therefore in order for the cocone component $U A_l \to \lim_{\to} U A_\bullet$ to be an algebra homomorphism the product of $a$ with $b$ in $\lim_\to U A_\bullet$ has to be the image of this product in $A_l$. This defines the colimiting cocone $A_l \to \lim_\to A_\bullet$. \item The left hand has functorial fibrant replacement (this is trivial, since every object is fibrant) and functorial [[path objects]]. This follows by the same argument as for the path object in $cdgAlg_k$ (\href{model+structure+on+dg-algebras#PathObjectsForUnboundedCommutative}{here}) this can be taken to be $(-)\otimes_k \Omega^\bullet_{poly}(\Delta[1])$. \end{enumerate} \end{proof} \hypertarget{formal_cotangent_bundle}{}\subsubsection*{{Formal cotangent bundle}}\label{formal_cotangent_bundle} Given $C \in dgcAlg_k^{op}$ as \hyperlink{BasicDgGeometry}{above} we want to consider its \emph{formal [[cotangent bundle]]} $T^\ast_f c$, i.e. the [[infinitesimal neighbourhood]] around the [[zero section]] of the would-be actual [[cotangent bundle]] \begin{defn} \label{}\hypertarget{}{} Write \begin{displaymath} Der(\mathcal{O}(C)) \in \mathcal{O}(C) Mod \end{displaymath} for the [[automorphism ∞-Lie algebra]] of $A$ whose underlying cochain complex is \begin{displaymath} \itexarray{ \cdots \to Der(\mathcal{O}(C))_k \overset{[d_{\mathcal{O}(C)},-]}{\longrightarrow} Der(\mathcal{O}(C))_{k+1} \longrightarrow \cdots } \,. \end{displaymath} where $Der(\mathcal{O}(C))_k$ is the module of [[derivations]] \begin{displaymath} v \colon \mathcal{O}(C)^\bullet \to \mathcal{O}(C)^{\bullet + k} \end{displaymath} of degree $k$ and $[d_{\mathcal{O}(C)}, -]$ is the graded commutator of derivations with the [[differential]] of $\mathcal{O}(C)$ regarded as a degree 1 derivation $d_{\mathcal{O}(C)} \colon \mathcal{O}(C) \to \mathcal{O}(C)$. We say that $\mathcal{O}(C)$ is \emph{smooth} if $Der(\mathcal{O}(C))$ is cofibrant as an object on $\mathcal{O}(C) Mod$. Write \begin{displaymath} \mathcal{O}(T^*_f C) \coloneqq Sym_{\mathcal{O}(C)} Der(\mathcal{O}(C)) \in cdgAlg_{\mathcal{O}(C)} \end{displaymath} for the free $\mathcal{O}(C)$-algebra over $Der(\mathcal{O}(C))$. We write \begin{displaymath} T^*_f C \in cdgAlg^{op}_k/_C \end{displaymath} for its formal dual. \end{defn} \begin{defn} \label{}\hypertarget{}{} Every $S \in \mathcal{O}(C)$ defines a morphism \begin{displaymath} d S \colon C \to T^*_f C \end{displaymath} in $dgcAlg_k^{op}$ which is dually given by \begin{displaymath} \mathcal{O}(C) \leftarrow Sym_{\mathcal{O}(C)} Der(\mathcal{O}(C)) \;\colon\; Sym_{\mathcal{O}(C)} [\hat S , -] \,, \end{displaymath} where $\hat S : \mathcal{O}(C) \to \mathcal{O}(C)$ is the $k$-linear multiplication operator defined by $S$ and where for $v \in Der(\mathcal{O}(C))$ we set \begin{displaymath} [\hat S, v] = v(S) \,, \end{displaymath} which may be regarded as the multiplication operator given by the commutator of $k$-linear endomorphisms of $\mathcal{O}(C)$ as indicated. \end{defn} \hypertarget{derived_critical_locus}{}\subsubsection*{{Derived critical locus}}\label{derived_critical_locus} \begin{defn} \label{DerivedCriticalLocusWithFormalCotangentBundle}\hypertarget{DerivedCriticalLocusWithFormalCotangentBundle}{} \textbf{(derived critical locus)} The \textbf{derived critical locus} of a morphism $S \colon C \to \mathbb{A}^1$ in dgcAlg\_k is the [[homotopy pullback]] $C_{\{d S = 0\}}$ in $cdgAlg^{op}/_{C}$ \begin{displaymath} \itexarray{ C_{\{d S = 0\}} &\to& C \\ \downarrow &\swArrow& \downarrow^{\mathrlap{0}} \\ C &\stackrel{d S}{\to}& T^*_f C } \,. \end{displaymath} \end{defn} \begin{prop} \label{PresentationByFreeDGCAlegbraOnMappingCone}\hypertarget{PresentationByFreeDGCAlegbraOnMappingCone}{} \textbf{(presentation by free dgc-algebra on mapping cone)} If $C$ is smooth in the sense that $Der(\mathcal{O}(C)) \in \mathcal{O}(C) Mod$ is cofibrant, then the derived critical locus (def. \ref{DerivedCriticalLocusWithFormalCotangentBundle}) is presented by \begin{displaymath} \mathcal{O}(C_{\{d S = 0\}}) \simeq Sym_{\mathcal{O}(C)} \left( Cone\left( Der(\mathcal{O}(C)) \stackrel{[\hat S , -]}{\to} \mathcal{O}(C) \right) \right) \underset{Sym_{\mathcal{O}(C)}(\mathcal{O}(C)) }{\otimes} \mathcal{O}(C) \,, \end{displaymath} where on the right we have the free $\mathcal{O}(C)$-algebra over the [[mapping cone]] of $[\hat S, -]$ with [[extension of scalars]] along $\mathcal{O}( C \overset{(id,0)}{\to} C \times \mathbb{A}^1 )$. \end{prop} \begin{proof} Using the [[pasting law]] we may decompose the homotopy pullback into a [[pasting]] of two homotopy pullback squares as follows: \begin{displaymath} \itexarray{ C_{\{d S = 0\}} &\longrightarrow& &\longrightarrow& C \\ \downarrow &\swArrow& \downarrow &\swArrow& \downarrow^{\mathrlap{0}} \\ C &\underset{(id,0)}{\longrightarrow}& C \times \mathbb{A}^1 &\underset{}{\longrightarrow}& T^*_f C } \,. \end{displaymath} First consider the square on the right: By prop \ref{SymOCAdjunction} the functor $Sym_{\mathcal{O}(C)}$ is left Quillen. Hence if $Der(\mathcal{O}(C))$ is cofibrant in $\mathcal{O}(C) Mod$ then the homotopy pushout corresponding to the square on the right may be computed as the image under $Sym_{\mathcal{O}(C)}$ of the homotopy pushout in $\mathcal{O}(C) Mod$. By the disucssion at [[model structure on dg-modules]], for these the homotopy cofibers are given by the ordinary [[mapping cone]] construction for chain complexes. \begin{displaymath} \itexarray{ Cone\left( Der(\mathcal{O}(C)) \stackrel{[\hat S, -]}{\to} \mathcal{O}(C) \right) &\leftarrow& Cone\left( Der(\mathcal{O}(C)) \stackrel{Id}{\to} Der(\mathcal{O}(C)) \right) \\ \uparrow && \uparrow \\ \mathcal{O}(C) &\stackrel{[\hat S, -]}{\leftarrow}& Der(\mathcal{O}(C)) } \,. \end{displaymath} More in detail, write \begin{displaymath} Cone\left( Der(\mathcal{O}(C)) \stackrel{Id}{\to} Der(\mathcal{O}(C)) \right) \in \mathcal{O}(C) Mod \end{displaymath} for the [[mapping cone]] on the identity: \begin{displaymath} \itexarray{ \cdots & Der(\mathcal{O}(C))_k &\stackrel{-[d_{\mathcal{O}(C)}, -]}{\to}& Der(\mathcal{O}(C))_{k+1} \\ & \oplus &\searrow^{\pm \mathrlap{Id}}& \oplus & \cdots \\ \cdots & Der(\mathcal{O}(C))_{k-1} &\stackrel{[d_{\mathcal{O}(C)}, -]}{\to}& Der(\mathcal{O}(C))_k & \cdots } \,. \end{displaymath} Then the [[mapping cone]] $Cone\left(Der(\mathcal{O}(C)) \stackrel{[\hat S, -]}{\to} \mathcal{O}(C) \right)$ is \begin{equation} \itexarray{ \cdots & Der(\mathcal{O}(C))_k &\stackrel{-[d_{\mathcal{O}(C)}, -]}{\to}& Der(\mathcal{O}(C))_{k+1} \\ & \oplus &\searrow^{\pm [\hat S, -]}& \oplus & \cdots \\ \cdots & \mathcal{O}(C)_{k-1} &\stackrel{[d_{\mathcal{O}(C)}, -]}{\to}& \mathcal{O}(C)_k & \cdots } \,. \label{TheBVComplex}\end{equation} If we extend the graded commutators in the evident way we may write the [[nLab:differential]] in $Cone(Der(\mathcal{O}(C)) \stackrel{[\hat S, -]}{\to} \mathcal{O}(C))$ as \begin{displaymath} d = \left[ \hat S + d_{\mathcal{O}(C)} \;,\; - \right] \,. \end{displaymath} Here the second term will be the differential of the [[nLab:BRST-complex]] of $\mathfrak{c}$, whereas the sum is of the type of a differential in a [[nLab:BRST-BV complex]]. For that to happen, however the two copies of $\mathcal{O}(C)$ in $Sym_{\mathcal{O}(C)}(\mathcal{O}(C))$ need to be identified, this is achived by the remaining homotopy pushout corresponding to the square on the left \begin{displaymath} \itexarray{ \mathcal{O}(C_{\{d S = 0\}}) &\longleftarrow& Sym_{\mathcal{O}(C)} \left( Cone\left( Der(\mathcal{O}(C)) \stackrel{[\hat S, -]}{\to} \mathcal{O}(C) \right) \right) \\ \uparrow && \uparrow \\ \mathcal{O}(C) &\underset{}{\longleftarrow}& Sym_{\mathcal{O}(C)}(\mathcal{O}(C)) } \,. \end{displaymath} Since here the morphism on the right is the pushout of a cofibration, it is itself still a cofibration, and by assumption $Sym_{\mathcal{O}(C)}(\mathcal{O}(C))$ is cofibrant. Therefore this homotopy pushout is given by the ordinary pushout, and that yields the [[tensor product]] as in the claim. \end{proof} \hypertarget{ComparisonToBVBRSTExample}{}\subsubsection*{{BV-BRST complex}}\label{ComparisonToBVBRSTExample} Traditionally the [[BV-BRST complex]] of a [[Lagrangian field theory]] is obtained by \begin{enumerate}% \item choosing a [[Koszul-Tate complex]] $s_{KT}$ resolving the [[shell]]; \item choosing a [[BRST complex]] $s_{BRST}$ exhibiting the [[gauge invariance]] \item appealing to [[homological perturbation theory]], for extending the sum of the two differentials to a unified [[BV-BRST differential]] \begin{displaymath} s_{BV} = s_{KT} + s_{BRST} + more \end{displaymath} \end{enumerate} (e.g. \href{BV-BRST+formalism#Henneaux90}{Henneaux 90. around (50)}) Vie the concept of the derived critical locus this process is systematized: Given just $s_{BRST}$ and the Lagrangian, both $s_{KT}$ and ``more'' follows (if $s_{BRST}$ does capture all the relevant gauge symmetries, that is) and the appearance of the [[antibracket]] finds its conceptual explanation. Let $\mathfrak{a}$ be a [[Lie algebroid]] over a space $X$, with [[Chevalley-Eilenberg algebra]] \begin{displaymath} \mathcal{O}(\mathfrak{a}) \;=\; \left( Sym_{\mathcal{O}(X)}(\langle c^a\rangle) \;,\; d_{\mathfrak{a}} \right) \end{displaymath} with differential given by \begin{displaymath} d_{\mathfrak{a}} \;:\; f \mapsto c^a R^i_a \frac{\partial}{\partial x^i} f \end{displaymath} \begin{displaymath} d_{\mathfrak{a}} \;:\; c^a \mapsto \frac{1}{2} C^{a}{}_{b c} c^b \wedge c^c \,. \end{displaymath} for functions $f \in \mathcal{O}(X)$, [[infinitesimal gauge symmetries]] $R^i_a \frac{\partial}{\partial x^i}$, gauge symmetry structure functions $C^{a}{}_{b c}$ and [[ghost]] generators $c^a$. The ``algebra of vector fields/[[derivations]]'' $Der(\mathcal{O}(\mathfrak{a}))$ on $\mathfrak{a}$ is the [[automorphism ∞-Lie algebra]] whose underlying cochain complex is \begin{displaymath} \itexarray{ \left\langle \frac{\partial}{\partial c^a} \right\rangle & \overset{[d_{\mathfrak{a}}, -]}{\to} & \left\langle \frac{\partial}{\partial x^i} \right\rangle \oplus \left\langle c^a \frac{\partial}{\partial c^b} \right\rangle \\ -1 && 0 } \,. \end{displaymath} We check on generators that \begin{displaymath} \begin{aligned} \left[d_{\mathfrak{a}}, \frac{\partial}{\partial c^a} \right] = R_a^i \frac{\partial}{\partial x^i} + C^b{}_{a c} c^c \frac{\partial}{\partial c^b} \end{aligned} \end{displaymath} and \begin{displaymath} \begin{aligned} \left[ d_{\mathfrak{a}}, \frac{\partial}{\partial x^i} \right] = c^a \frac{\partial R_a^j}{\partial x^i} \frac{\partial}{\partial x^j} \end{aligned} \,. \end{displaymath} Now let \begin{displaymath} S \;\colon\; \mathfrak{a} \longrightarrow \mathbb{R} \end{displaymath} be a morphism, dually a dgc-algebra homomorphism of the form \begin{displaymath} \mathcal{O}(\mathfrak{a}) \longleftarrow \mathcal{O}(\mathbb{R}) \;\colon\; S^* \,. \end{displaymath} This is equivalently a function \begin{displaymath} S \;\colon\; X \longrightarrow \mathbb{R} \end{displaymath} which is [[gauge invariance|gauge invariant]] \begin{displaymath} \begin{aligned} d_{\mathfrak{a}} S & = c^a R_a^i \frac{\partial}{\partial x^i} S \\ & = 0 \end{aligned} \,. \end{displaymath} We have a contraction homomorphism of $\mathcal{O}(\mathfrak{a})$-[[modules]] \begin{displaymath} \iota_{d S} \;\colon\; Der(\mathcal{O}(\mathfrak{a})) \longrightarrow \mathcal{O}(\mathfrak{a}) \,. \end{displaymath} and may form its [[mapping cone]] \eqref{TheBVComplex} \begin{displaymath} \itexarray{ \left\langle \frac{\partial}{\partial c^a} \right\rangle &\stackrel{[d_{\mathfrak{a}}, -]}{\longrightarrow}& \left\langle c^a \frac{\partial}{\partial c^b} \right\rangle \oplus \left\langle \frac{\partial}{\partial x^i} \right\rangle \\ && &\searrow^{\mathrlap{\iota_{d S}}}& \\ && && \mathcal{O}(X) &\stackrel{d_{\mathfrak{a}}}{\to}& \left\langle c^a \right\rangle \\ -2 && -1 && 0 && 1 } \,. \end{displaymath} On the free algebra of this \begin{displaymath} Sym_{\mathcal{O}(X)} \left( Der(\mathcal{O}(\mathfrak{a}))[-1] \stackrel{\iota_{d S}}{\to} \mathcal{O}(X)\oplus \langle c^a\rangle) \right) \end{displaymath} we have the differential given on generators by \begin{displaymath} \frac{\partial}{\partial c^a} \mapsto R_a^i \frac{\partial}{\partial x^i} + C^b{}_{a c} c^c \frac{\partial}{\partial c^b} \end{displaymath} \begin{displaymath} \frac{\partial}{\partial x^i} \mapsto \frac{\partial S}{\partial x^i} + c^a \frac{\partial R_a^j}{\partial x^i} \frac{\partial}{\partial x^j} \end{displaymath} \begin{displaymath} x^i \mapsto c^a R_a^i \end{displaymath} \begin{displaymath} c^a \mapsto \frac{1}{2}C^a{}_{b c} c^b \wedge c^c \end{displaymath} and similarly after tensoring in order to identify the extra copy of $\mathcal{O}(X)$ with the base $\mathcal{O}(X)$. If $\langle R_a\rangle$ is the full kernel of $\iota_{d S} : Der(C^\infty(X)) \to C^\infty(X)$ and there are no further relations, then this is the full [[BRST-BV complex]] of $S$. \hypertarget{references}{}\subsection*{{References}}\label{references} The above material is adapted from \begin{itemize}% \item [[Urs Schreiber]]: \emph{[[schreiber:derived critical locus]]} Seminar notes, March 2011 \end{itemize} (taking into account a correction provided by [[Vincent Schlegel]]) aimed at providing proof for the claim in \begin{itemize}% \item [[Kevin Costello]], [[Owen Gwilliam]], section 4.8.1 of \emph{[[Factorization algebras in perturbative quantum field theory]]} (\href{https://pdfs.semanticscholar.org/0eb5/652340bb414869764cf5b30feed90597558d.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item [[Gabriele Vezzosi]], \emph{Derived critical loci I - Basics}, \href{http://arxiv.org/abs/1109.5213}{arxiv/1109.5213} \item [[Tony Pantev]], [[Bertrand Toen]], M. Vaquie, G. Vezzosi, \emph{Quantization and derived moduli spaces I: shifted symplectic structures}, \href{http://arxiv.org/abs/1111.3209}{arxiv/1111.3209} \item [[Kevin Costello]], \emph{Notes on supersymmetric and holomorphic field theories in dimension 2 and 4} (\href{http://www.math.northwestern.edu/~costello/sullivan.pdf}{pdf}) \end{itemize} [[!redirects derived critical loci]] \end{document}