\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{derived microlocalization} [[!redirects Derived microlocalization]] [[!redirects derived microlocalization]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{motivation_for_a_derived_notion_of_microlocalization}{Motivation for a derived notion of microlocalization}\dotfill \pageref*{motivation_for_a_derived_notion_of_microlocalization} \linebreak \noindent\hyperlink{loop_space_and_deformation_to_the_normal_bundle_method_i}{Loop space and deformation to the normal bundle: method I}\dotfill \pageref*{loop_space_and_deformation_to_the_normal_bundle_method_i} \linebreak \noindent\hyperlink{loop_space_and_deformation_to_the_normal_bundle_method_ii}{Loop space and deformation to the normal bundle: method II}\dotfill \pageref*{loop_space_and_deformation_to_the_normal_bundle_method_ii} \linebreak \noindent\hyperlink{a_derived_analog_of_microlocalization}{A derived analog of microlocalization}\dotfill \pageref*{a_derived_analog_of_microlocalization} \linebreak \noindent\hyperlink{a_derived_analytic_analog_of_microlocalization}{A derived analytic analog of microlocalization}\dotfill \pageref*{a_derived_analytic_analog_of_microlocalization} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} [[Microlocalization]] is a tool to study the propagation of singularities of solutions of partial differential systems, in order to study pullbacks of solutions of differential systems (which generalize products of distributions) and prove [[index theorems]]. Derived microlocalization is an adaptation of the theory of microlocalization to the setting of derived [[global analytic geometry]]. \hypertarget{motivation_for_a_derived_notion_of_microlocalization}{}\subsection*{{Motivation for a derived notion of microlocalization}}\label{motivation_for_a_derived_notion_of_microlocalization} In non-smooth situations, the usual normal and conormal bundle used in classical microlocalization is not well behaved, and one needs to take derived versions of them. Moreover, to study [[global analytic index theory]], one needs a formulation of the theory of microlocalization in terms of derived loop stacks, in order to work out a cyclic and Hochshild version of index theorems (similar to the one developed by Kashiwara and Schapira in the [[microlocal formulation of index theory]]) that works on an arbitrary (e.g. integral) basis. \hypertarget{loop_space_and_deformation_to_the_normal_bundle_method_i}{}\subsection*{{Loop space and deformation to the normal bundle: method I}}\label{loop_space_and_deformation_to_the_normal_bundle_method_i} We would like to define a family over (say) the disc $D^1$ whose fiber at $0$ is $LX:=\Hom(S^1,X)$ and whose fiber at $1$ is $[LX/S^1]$. In the case of a usual scheme, this is done (by Vezzosi) by showing that $LX$ identifies with $\Hom(BG_a,X)$, and by making $G_a$ act multiplicatively on the action of $BG_a$ on $LX$, to get the trivial action at $0$ and the usual action at $1$. This gives the desired family. Recall that $BG_a$ is the affinization of $B\mathbb{Z}\cong S^1$. \hypertarget{loop_space_and_deformation_to_the_normal_bundle_method_ii}{}\subsection*{{Loop space and deformation to the normal bundle: method II}}\label{loop_space_and_deformation_to_the_normal_bundle_method_ii} [[Microlocalization]] in [[derived geometry]] involves the proper definition of the deformation to the [[normal bundle]] of a closed embedding $Y\subset X$ of global analytic spaces (or even stacks). One needs to consider a [[derived loop space]] approach to this construction because it allows to avoid the use of denominators in the definition of the [[Chern character]] (following Connes-Loday-Toen-Vezzosi) and in the development of more general [[global analytic index theory]] with integral coefficients. The space of paths on $X$ based on $Y$ is the groupoid acting on $Y$ given by \begin{displaymath} P_Y X:=\{f\in \Hom(\Delta^1,X),\;f(0)\in Y,\;f(1)\in Y\}. \end{displaymath} More concretely, this is given by the homotopy pullback \begin{displaymath} \itexarray{ P_Y X &\to& \Hom(\Delta^1,X) \\ \downarrow && \downarrow^{\mathrlap{ev_0\times ev_1}} \\ Y\times Y &\to& X\times X } \end{displaymath} Notice that the natural projection $P_Y X\to Y\times Y$ makes $P_Y X$ a groupoid (of paths in $X$) acting on $Y$. In the case of the diagonal immersion $Y=M\hookrightarrow M\times M=X$, we get \begin{displaymath} P_Y X\cong LM:=\Hom(S^1,M). \end{displaymath} There is a natural projection $p:P_Y X\to \Hom(\Delta^1,X)\sim X$ and $P_Y X$ is equiped with the natural structure of a groupoid acting on $Y$ through the projection $P_Y X\to Y\times Y$. A more explicit description of the loop space (that is obtained by using the homotopy $\Delta^1\sim \Delta^0$) is given by the homotopy pullback \begin{displaymath} P_Y X=Y\times^h_X Y, \end{displaymath} which clearly has an interesting meaning only in the setting of derived geometry. See also at \emph{[[derived loop space]]} and at \emph{[[Hochschild cohomology]]}. To make the above construction work for general Artin stacks, one needs to make it local for the smooth topology. This is done by replacing the loop space groupoid $P_Y X$ acting on $Y$ by its formal completion along the identity morphism. This gives a formal groupoid $\hat{P}_Y X$ that is equivalent modulo the [[HKR]] theorem (in characteristic $0$) to $T_Y[-1]X$ for a general Artin stack. Similarly, we will have $\hat{L}M:=\hat{P}_M(M\times M)\cong T[-1]M$ by [[HKR]]. The deformation to the normal bundle in strict derived global analytic geometry is then simply given by the (\textbf{false to be corrected}) formula (with $D^1=\mathbb{M}(R\{X\}^\dagger)$ for $R$ the base ind-Banach ring) \begin{displaymath} \widetilde{P_Y X}:=\{f\in \Hom_{D^1}(\Delta^1\times D^1,X\times D^1),\;f(0,0)\in Y,\; f(1,0)\in Y,\;f(-,1)\in (X\backslash Y)\Rightarrow f(x,t)\in (X\backslash Y)\forall t\neq 0\}. \end{displaymath} More concretely, this is given by the homotopy pullback (where $U(1)=\mathbb{M}(R\{X,Y\}^\dagger/(XY-1))$ and we use the homotopy equivalence $\Hom(\Delta^1,X)\sim X$) \begin{displaymath} \itexarray{ \widetilde{P_Y X} &\to& \Hom_{D^1}(\Delta^1\times D^1,X\times D^1) \\ \downarrow && \downarrow^{\mathrlap{ev_{(0,0)}\times ev_{(1,0)}\times \ev_{(-,U(1))}\times \ev_{(-,1)}}} \\ Y\times Y\times \Hom(\Delta^1\times U(1),(X\backslash Y))\times (X\backslash Y) &\stackrel{i\times j\times k}{\to}& X\times X\times \Hom(\Delta^1\times U(1),X) \times X} \end{displaymath} It has an evident natural projection $t:\widetilde{P_Y X}\to D^1$, and a natural projection $\widetilde{P_Y X}\to Y\times Y$ that makes it a family of groupoids parametrized by $D^1$ and acting on $Y$. There is also a natural projection $p:\widetilde{P_Y X}\to X$ given by $f\mapsto f(-,1)$. We will denote $s:P_Y X\to \widetilde{P_Y X}$ the fiber $t^{-1}(0)$. One may complete $\widetilde{P_Y X}$ along the unit of its groupoid structures, to get a family of formal groupoids $\widehat{P_Y X}$ parametrized by $D^1$, whose fiber at $0$ will be the formal loop space $\hat{P}_Y X$ obtained by completing the path groupoid $P_Y X$ acting on $Y$ along its identity morphism, and whose fiber at $1$ will be the formal completion $\hat{X}_Y$ of $X$ along $Y$. There is a natural action of $S^1$ on $\widehat{P_Y X}$. We will still denote $t:\widehat{P_Y X}\to D^1$ the natural projection, $s:\widehat{P}_Y X\to \widehat{P_Y X}$ the fiber $t^{-1}(0)$, and $p:\widehat{P_Y X}\to X$ the natural projection (evaluation at $(-,1)$). In the particular case of the diagonal embedding $Y=M\hookrightarrow M\times M=X$ over a field of characteristic $0$, the quotient of $X$ by this family of formal groupoids gives back (modulo a convenient [[HKR]] theorem) exactly Simpson's non-abelian Hodge structure, that gives a family of formal stacks over $D^1$ whose fiber at $0$ is the tangent space $TX$ (seen as the quotient of $X$ by the trivial action of $T[-1]X$) and whose fiber at $1$ is the so-called de Rham space $X_{dR}$ of $X$. \hypertarget{a_derived_analog_of_microlocalization}{}\subsection*{{A derived analog of microlocalization}}\label{a_derived_analog_of_microlocalization} We now work on an arbitrary derived Artin stack $M$, such that the diagonal $Y=M\to M\times M=X$ is an affine closed embedding. The usual theory of [[microlocalization]] may be adapted to the derived global analytic setting by replacing the deformation to the normal bundle $\widetilde{T_Y X}\to \mathbb{A}^1$ by the formal deformation to the normal bundle $\widehat{P_Y X}\to D^1$. The derived specialization functor is given on $F\in D^b(X)$ by \begin{displaymath} \nu_Y(F):=s^*p^*F\in D^b(\hat{P}_Y X). \end{displaymath} Remark that the loop space analog $L^*X$ of the odd cotangent bundle $T^*[1]X$ (that should be dual to the odd tangent bundle $T[-1]X$ (related to $LX$ by the [[HKR]] theorem) is given by $S^1\otimes X$ (external tensor product by the simplicial circle). We will have for every stack $Y$, the canonical equivalence \begin{displaymath} \Hom(S^1\otimes X,Y)\cong \Hom_{SSets}(S^1,\Hom_{dSt}(X,Y)). \end{displaymath} The derived Fourier-Sato transformation is given on $F\in D^b(\hat{P}_Y X)$ by \begin{displaymath} \Phi(F):=?. \end{displaymath} The derived microlocalization functor is given on $F\in D^b(M)$ by \begin{displaymath} \mu(F):=\Phi(\nu_Y(F)) \end{displaymath} for $Y=M\hookrightarrow M\times M=X$. \hypertarget{a_derived_analytic_analog_of_microlocalization}{}\subsection*{{A derived analytic analog of microlocalization}}\label{a_derived_analytic_analog_of_microlocalization} One may replace the simplicial circle $S^1$, used in the definition of the derived loop space, by the unitary group $U(1)$ of [[overconvergent global analytic geometry]], to get a more analytic theory of microlocalization. In the complex situation, we will have $U(1)\cong S^1$ up to $D^1$-homotopy. Remark that the exponential map $exp(i-):\mathbb{R}\to S^1$ also has a meaning in overconvergent complex analytic geometry, if we see $\mathbb{R}\subset \mathbb{C}$ as a closed subset equipped with its germs of analytic functions. In the global analytic setting (without imposing homotopy invariance), there is no reason to have $U(1)=D^1\times_{*\coprod *} *$. We thus prefer to use $P^1:=D^1\coprod_{U(1)}D^1$ as a natural global analytic parameter space for paths. We define \begin{displaymath} L^\dagger_Y X:=\{f\in Hom(P^1,X), f(0)\in Y,\; f(\infty)\in Y\}. \end{displaymath} Remark that up to $D^1_\mathbb{R}$-homotopy, we get \begin{displaymath} L^\dagger_Y X\sim L_Y X. \end{displaymath} We must now check that the natural morphism \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[David Ben-Zvi]], [[David Nadler]], \emph{Loops spaces and connections} (\href{http://arxiv.org/abs/1002.3636}{arXiv:1002.3636}) \item [[Damien Calaque]], [[Andrei Caldararu]] and [[Junwu Tu]]: \emph{PBW for an inclusion of Lie algebras} (\href{http://arxiv.org/abs/1010.0985}{arXiv:1010.0985}) \item [[Damien Calaque]], [[Andrei Caldararu]] and [[Junwu Tu]]: \emph{On the Lie algebroid of a derived self-intersection} (\href{http://arxiv.org/abs/1306.5260}{arXiv:1306.5260}) \end{itemize} \end{document}