\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{derived noncommutative geometry} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{some_history}{Some history}\dotfill \pageref*{some_history} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[noncommutative algebraic geometry]] one represents a [[scheme]] by an [[abelian category]] of [[quasicoherent sheaf|quasicoherent sheaves]] on the [[scheme]], and looks at more general abelian categories as being categories of quasicoherent sheaves on a noncommutative space. In \emph{derived (higher) noncommutative (algebraic) geometry} one instead considers the [[derived category]] of [[quasicoherent sheaf|quasicoherent sheaves]], or more precisely its [[enhanced triangulated category|dg-enhancement]] or [[A-infinity-category|A-infinity-enhancement]]; dg-enhancements for the derived categories of quasiprojective smooth varieties are essentially unique by the results of Lunts and Orlov. Taking the derived category instead of the abelian loses a bit of information but sometimes the information is sufficient. In general one represents complex noncommutative spaces by [[pretriangulated dg-category|pretriangulated dg-categories]]. They may be viewed as models for stable $(\infty,1)$-categories. Note that accessible stable $(\infty,1)$-categories are quite close to Grothendieck $(\infty,1)$-topoi; more flexibility one gets from pretriangulated $A_\infty$-categories or, even better, certain class of [[spectral categories]].\newline This is well into [[homotopy theory]] area. Quillen [[model category]] structures and [[homotopy limit]]s in the context of dg-categories were studied by a number of people (including the impressive thesis by Tabuada). On the other hand, over a mixed characteristics, the meaning of such representations is less well understood. Derived noncommutative geometry has been informally introduced by Kapranov-Bondal and later Orlov around 1990; full framework belongs to [[Kontsevich]], [[Valery Lunts|Lunts]], van den Bergh, Katzarkov, Kuznetsov, Kaledin. Some of the works of [[Bertrand Toen|Toen]], Vaquie, Keller, Cisinski, Tabuada are properly in this area as well. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} In \hyperlink{KatzarkovKontsevichPantev}{Katzarkov-Kontsevich-Pantev} the following definition is given. \begin{udefinition} A \textbf{graded complex nc-space} is a $\mathbb{C}$-linear [[dg-category|differential graded category]] $C$ which is homotopy complete and cocomplete (has all [[homotopy limit]]s and colimits). \end{udefinition} The [[derived category|derived categories]] of [[quasicoherent sheaf|quasicoherent sheaves]] on a [[scheme]] over $Spec(\mathbb{C})$ is one of the examples; another example is the category of dg-modules over a fixed [[dg-algebra]] $A$, which are such that $A$ admits an exhaustive filtration such that the associated graded is a sum of shifts of $A$. Call that category $A$-$Mod$. Kontsevich calls a complex differential $\mathbb{Z}/2$-graded algebra \begin{itemize}% \item \textbf{smooth} if $A$ is a perfect object in the category of $A$-$A$-dg-bimodules (perfect object here means that $Hom(A,-)$ preserves small homotopy colimits); \item \textbf{compact} if the total complex dimension of its cohomology $H^\bullet(A,d_A)$ is finite \end{itemize} The category $A$-$Mod$ is a smooth (resp. compact) nc space if the underlying dg-algebras $A$ is; this notion depends on the category and not on the underlying dg-algebra. The above definition implies that a category $C$ which represents a nc-space in the sense above is [[triangulated category|triangulated]] and [[Karoubi envelope|Karoubi closed]]. Sometimes this are requirements in another variant of the definition. \begin{udefinition} A \textbf{noncommutative space} $X$ is a small [[triangulated category]] $C_X$ which is [[Karoubi envelope|Karoubi closed]] (=every [[idempotent]] is a [[split idempotent]]) and appropriately [[enriched category|enriched]] over either \begin{itemize}% \item [[spectrum|spectra]] $Hom_{C_X}(E,F[i])=\pi_{-i}\mathbf{Hom}_{C_X}(E,F)$ \item [[chain complex|complexes]] of $k$-vector spaces (i.e. is a [[dg-category]]): $Hom(E,F[i])= H^i(\mathbf{Hom}_{C_X}(E,F))$. $C_X$ is $k$-linear over a field $k$ and one writes $X/k$. If instead $k$ is replaced by a ring $R$ then one enriches over complexes of $R$-modules which are [[model structure on chain complexes|cofibrant]]. \end{itemize} \end{udefinition} This receives good motivation from the fact that [[stable (infinity,1)-categries]] with a small set of generators are equivalently the [[categories of modules]] over an $A_\infty$-ring(oid). See \href{stable+(infinity%2C1}{there}-category\#AsCategoriesOfModules). \hypertarget{some_history}{}\subsection*{{Some history}}\label{some_history} In the early works of the Moscow school ([[Kapranov]], [[Alexei Bondal|Bondal]], [[Dmitri Orlov|Orlov]], [[Kontsevich]]) one replaces a [[variety]] by the [[derived category]] of [[coherent sheaves]] (or [[quasicoherent sheaves]] on that variety, or [[dg-category]] (or [[A-infinity category]]) [[enhanced triangulated category|enhancements]] thereof. There are also noncommutative deformations of such derived categories and analogues like the categories corresponding to the so-called [[Landau-Ginzburg model]]s. Therefore [[noncommutative derived algebraic geometry]] (and even noncommutative motives). Notice that the [[derived category]] of coherent sheaves on a variety does \emph{not} remember all the structure of the original variety hence derived geometry loses often some information (sometimes not); thus derived algebraic geometry is sometimes easier than nonderived. \hypertarget{references}{}\subsection*{{References}}\label{references} Survey includes \begin{itemize}% \item [[Maxim Kontsevich]], \emph{Geometry in triangulated categories}, talk at \emph{[[New Spaces for Mathematics and Physics]]}, IHP Paris, Oct-Sept 2015 (\href{https://www.youtube.com/watch?v=XnmO9RAbl50}{video recording}) \end{itemize} Original articles include \begin{itemize}% \item L. Katzarkov, [[Maxim Kontsevich]], [[Tony Pantev]], \emph{Hodge theoretic aspects of mirror symmetry}, \href{http://arxiv.org/abs/0806.0107}{arxiv:0806.0107} \end{itemize} and a bit earlier this treatise on formal (infinitesimal in the sense of [[formal schemes]]) aspect as used in the [[deformation theory]] is in \begin{itemize}% \item [[Maxim Kontsevich]], [[Yan Soibelman]], \emph{Notes on A-infinity algebras, A-infinity categories and non-commutative geometry. I}, \href{http://arxiv.org/abs/math/0606241}{math.AG/0606241} \item [[Dmitry Kaledin]], \emph{Homological methods in non-commutative geometry} (2008) (\href{http://imperium.lenin.ru/~kaledin/math/tokyo/final.pdf}{pdf}) \end{itemize} The relations to tropical and symplectic geometry are in recent Kontsevich's talk at 2009 Arbeitstagung: \begin{itemize}% \item [[Maxim Kontsevich]], Mathematische Arbeitstagung 2009, \emph{Symplectic geometry of homological algebra}, preprint MPIM2009-40a, \href{http://www.mpim-bonn.mpg.de/preprints/send?bid=4024}{pdf} \end{itemize} Homological mirror symmetry is one of the main motivations and statements of the derived noncommutative algebraic geometry \begin{itemize}% \item [[Maxim Kontsevich]], \emph{Homological algebra of mirror symmetry}, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Z\"u{}rich, 1994), 120--139, Birkh\"a{}user, Basel, 1995. \item [[Maxim Kontsevich]], [[Yan Soibelman]], \emph{Homological mirror symmetry and torus fibrations}, in Symplectic geometry and mirror symmetry (Seoul, 2000), 203--263, World Sci. Publ., River Edge, NJ, 2001. \item [[Dmitri Orlov]], \emph{Smooth and proper noncommutative schemes and gluing of DG categories}, \href{http://arxiv.org/abs/1402.7364v1}{arXiv}. \end{itemize} Algebraic geometry over [[formal duals]] of [[E-n algebras]] is considered in \begin{itemize}% \item [[John Francis]], \emph{Derived algebraic geometry over $\mathcal{E}_n$-Rings} (\href{http://math.northwestern.edu/~jnkf/writ/thezrev.pdf}{pdf}) \item [[John Francis]], \emph{The tangent complex and Hochschild cohomology of $\mathcal{E}_n$-rings} (\href{http://math.northwestern.edu/~jnkf/writ/cotangentcomplex.pdf}{pdf}) \end{itemize} Notice that for $n \geq 2$ the underlying ordinary rings (under $\pi_0$) are commutative. Therefore this has similarities with the [[formal geometry|formal]] [[noncommutative algebraic geometry]] perturbating around abelian schemes that is discussed in \begin{itemize}% \item [[Mikhail Kapranov]], \emph{Noncommutative geometry based on commutator expansions} (\href{http://arxiv.org/abs/math/9802041}{arXiv:9802041}) \end{itemize} For more on this see at \emph{[[Kapranov's noncommutative geometry]]} [[!redirects derived noncommutative algebraic geometry]] [[!redirects noncommutative derived algebraic geometry]] \end{document}