\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{descent} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{locality_and_descent}{}\paragraph*{{Locality and descent}}\label{locality_and_descent} [[!include descent and locality - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{descent_for_ordinary_sheaves}{Descent for ordinary sheaves}\dotfill \pageref*{descent_for_ordinary_sheaves} \linebreak \noindent\hyperlink{descent_for_simplicial_presheaves}{Descent for simplicial presheaves}\dotfill \pageref*{descent_for_simplicial_presheaves} \linebreak \noindent\hyperlink{descent_for_strict_groupoid_valued_presheaves}{Descent for strict $\omega$-groupoid valued presheaves}\dotfill \pageref*{descent_for_strict_groupoid_valued_presheaves} \linebreak \noindent\hyperlink{AsGluing}{Descent in terms of gluing conditions}\dotfill \pageref*{AsGluing} \linebreak \noindent\hyperlink{gluing_for_ordinary_stacks}{Gluing for ordinary stacks}\dotfill \pageref*{gluing_for_ordinary_stacks} \linebreak \noindent\hyperlink{codescent}{Codescent}\dotfill \pageref*{codescent} \linebreak \noindent\hyperlink{monadic_descent}{Monadic descent}\dotfill \pageref*{monadic_descent} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} From the point of view of infinity category theory (nPOV), \emph{descent} is the study of generalizations of the [[sheaf]] condition on [[presheaf|presheaves]] to presheaves with values in [[higher category theory|higher categories]]. Those higher presheaves that satisfy descent are called [[infinity-stack]]s. More generally, \textbf{descent theory} studies existence and (non)uniqueness of an object $u$ in a (possibly higher) category $C_X$ provided some ``inverse image'' functor $f^*:C_X\to C_Y$ which applied to $u$ produces an object in some (possibly higher) category $C_Y$, or a collection of inverse image functors $\{f^*_\alpha:C_X\to C_{Y_\alpha}\}_{\alpha\in I}$ is given. Labels $Y_\alpha$ are considered as labels of local regions, over which objects in $C_{Y_\alpha}$ live and the inverse image functor is considered as some sort of restriction along geometric morphism of spaces from $Y_\alpha\to X$. In favourable cases, the nonuniqueness is parametrized by equipping the object $f^*(u)$ with additional ``gluing'' data $\xi$. The pair $(f^*(u),\xi)$ is called a \textbf{descent datum}, the existence of a reconstruction procedure of $u$ from $(f^*(u),\xi)$ is also called a descent, and it describes the property that the (higher) category of descent data in $C_Y$ is equivalent to the category $C_X$, or at least that it embeds via a canonical fully faithful functor. Descent theory in 1-categorical context has been first formulated by Grothendieck in FGA using pseudofunctors and in [[SGA1]] using fibered categories. The most important case is when there is a descent (in the sense of [[equivalence of higher categories]]) along an [[inverse image]] functor along every cover of a [[Grothendieck topology]] or its higher analogue; though many cases (for example [[descent in noncommutative algebraic geometry]]) do not fit into this framework. These cases of descent along all covers is also called (higher) stack theory and may be phrased in modern viewpoint as a characterization of $(\infty,1)$-[[(infinity,1)-sheaf|sheaves]] (i.e. $\infty$-[[infinity-stack|stacks]]) among all $(\infty,1)$-[[(infinity,1)-presheaf|presheaves]] as those $(\infty,1)$-presheaves which are [[local objects]] with respect to certain morphisms $Y \to X$ which are to be regarded as [[covers]] or [[hypercover]] of the $(\infty,1)$-presheaf $X$: the idea is that an $(\infty,1)$-sheaf ``descends from the cover $Y$ down to $X$''. More concretely \begin{itemize}% \item every [[(∞,1)-category of (∞,1)-sheaves]] is characterized as being a sub-[[(∞,1)-topos]] $Sh(S) \hookrightarrow PSh(S)$ of the $(\infty,1)$-topos of [[(∞,1)-presheaves]] on some (small) [[(∞,1)-category]] $S$; \item every such $(\infty,1)$-topos is a [[reflective (∞,1)-subcategory]] of $PSh(S)$, hence a [[localization of an (∞,1)-category]] at a collection $W = \{Y \to X\}$ of morphisms which are sent to equivalences by the left adjoint of the inclusion; \item and the sheaves in $Sh(S) \hookrightarrow PSh(S)$ are precisely the [[local objects]] with respect to this collection $W$ of morphisms, i.e. precisely those objects $A \in PSh(S)$ such that $PSh(S)(X,A) \to PSh(S)(Y,A)$ is an isomorphism in the [[homotopy category of an (infinity,1)-category|homotopy category]], which we shall write $PSh(S)(X,A) \stackrel{\simeq}{\to} PSh(S)(Y,A)$ in the following paragraphs. \item This condition is essentially the \emph{descent conditon}. \end{itemize} In concrete models for the [[(∞,1)-category of (∞,1)-sheaves]] -- notably in terms of the [[model structure on simplicial presheaves]] -- the morphisms $Y \to X$ in $W$ usually come from [[hypercovers]] $Y \to X$; in this case the above condition becomes $PSh(S)(X,A) \stackrel{\simeq}{\to} PSh(S)(colim^\Delta Y_\bullet, A)$ which is equivalent to $PSh(S)(X,A) \stackrel{\simeq}{\to} lim^\Delta PSh(S)(Y_\bullet, A)$. This in turn is usually equivalently written \begin{displaymath} A(X) \stackrel{\simeq}{\to} Desc(Y_\bullet \to X, A) := lim^\Delta A(Y_\bullet) \,. \end{displaymath} And this is the form of the [[local object]]-condition which is usually called \textbf{descent condition}. \hypertarget{descent_for_ordinary_sheaves}{}\subsection*{{Descent for ordinary sheaves}}\label{descent_for_ordinary_sheaves} Descent is best understood as a direct generalization of the situation for 0-stacks, i.e. ordinary sheaves, which we briefly recall in a language suitable for the following generalization. For $S$ any small [[category]] and [[Set]] the category of small sets, write $\mathrm{PSh}(S) = [S^{op}, Set]$ for the category of [[presheaf|presheaves]] on $S$. Categories of this form enjoy various nice properties which are familiar from $Set$ itself, and which are summarized by saying that $\mathrm{PSh}(S)$ is a [[topos]]. The relevance of this for the present purpose is that there is a natural notion of morphisms of topoi, which are [[functors]] respecting this structure in some sense: these are called [[geometric morphisms]]. A [[category of sheaves]] on $S$ is a sub-topos of $PSh(S)$ in that it is a [[full and faithful functor]] $Sh(S)\hookrightarrow PSh(S)$ which is a [[geometric morphism]]. One finds that the [[reflective subcategory]] $Sh(S) \hookrightarrow PSh(S)$ of sheaves inside presheaves is the [[localization]] of $PSh(S)$ at morphisms $f : Y \to X$ called [[local isomorphisms]], which are determined by and determine the choice of topos-inclusion. A [[presheaf]] $A$ is a [[sheaf]] precisely if it is a [[local object]] with respect to these [[local isomorphisms]], that is precisely if \begin{displaymath} Hom_{PSh(S)}(X,A) \stackrel{Hom_{PSh(S)}(f,A)}{\to} Hom_{PSh(S)}(Y,A) \end{displaymath} is an [[isomorphism]] for all [[local isomorphisms]] $f$. This locality condition is in fact the \emph{descent} condition: the sheaf has to descend from $Y$ down to $X$. More concretely, this condition is called a \emph{descent condition} when evaluated on morphisms $f : Y \to X$ which are [[hypercovers]]: namely if $\pi : Y^1 \to X$ is a [[local epimorphism]] with respect to the [[coverage]] that corresponds to the [[localization]] and if $\pi_2 : Y^2 \to Y^1 \times_X Y^1$ is a [[local epimorphism]], then with \begin{displaymath} Y^\bullet := (Y^2 \rightrightarrows Y^1) \end{displaymath} being the two canonical morphisms out of $Y^2$, it follows that the canonical morphism \begin{displaymath} colim Y^\bullet \to X \end{displaymath} is a [[local isomorphism]]. (This is exercise 16.6 in [[Categories and Sheaves]]). Therefore for a [[presheaf]] $A$ to be a [[sheaf]], it is necessary that \begin{displaymath} Hom_{PSh(S)}(X,A) \stackrel{\simeq}{\to} Hom_{PSh(S)}(colim Y^\bullet, A) \end{displaymath} is an [[isomorphism]]. The [[colimit]] may be taken out of the [[hom-functor]] to make this equivalently \begin{displaymath} Hom_{PSh(S)}(X,A) \stackrel{\simeq}{\to} lim Hom_{PSh(S)}(Y^\bullet, A) \,. \end{displaymath} It is convenient, suggestive and common to write $A(X) := Hom_{PSh(S)}(X,A)$, $A(Y^\bullet) := Hom_{PSh(S)}(Y^\bullet,A)$, following the spirit of the [[Yoneda lemma]] whether or not $X$ and/or $Y^\bullet$ are [[representable functor|representable]]. In that notation the above finally becomes \begin{displaymath} A(X) \stackrel{\simeq}{\to} lim A(Y^\bullet) \,. \end{displaymath} This is the form of the condition that is most commonly called the \emph{descent condition}. \hypertarget{descent_for_simplicial_presheaves}{}\subsection*{{Descent for simplicial presheaves}}\label{descent_for_simplicial_presheaves} For more references and background on the following see [[descent for simplicial presheaves]]. A well-studied class of models/presentations for an [[(∞,1)-category of (∞,1)-sheaves]] is obtained using the [[model structure on simplicial presheaves]] on an ordinary (1-categorical) [[site]] $S$, as follows. Let $[S^{op}, SSet]$ be the [[SimpSet|SSet]]-[[enriched category]] of [[simplicial presheaf|simplicial presheaves]] on $S$. Recall from [[model structure on simplicial presheaves]] that there is the \emph{global} and the \emph{local} injective simplicial model structure on $[S^{op}, SSet]$ which makes it a [[simplicial model category]] and that the local model structure is a (Bousfield-)localization of the global model structure. So in terms of simplicial presheaves the [[localization of an (∞,1)-category]] that we want to describe, namely [[∞-stackification]], is modeled as the [[localization of a simplicial model category]]. Recall that the [[(∞,1)-category]] modeled/presented by a [[simplicial model category]] is the full [[SimpSet|SSet]]-subcategory on fibrant-cofibrant objects. According to \href{http://www.math.harvard.edu/~lurie/papers/highertopoi.pdf#page=528}{section 6.5.2} of [[Higher Topos Theory|HTT]] we have: \begin{itemize}% \item the full simplicial subcategory on fibrant-cofibrant objects of $[S^{op}, SSet]$ with respect to the \emph{global} injective model structure is (the [[SimpSet|SSet]]-[[enriched category]] realization of) the $(\infty,1)$-category $PSh_{(\infty,1)}(S)$ of [[(∞,1)-presheaves]] on $S$. \item the full simplicial subcategory on fibrant-cofibrant objects of $[S^{op}, SSet]$ with respect to the \emph{local} injective model structure is (the [[SimpSet|SSet]]-[[enriched category]] realization of) the $(\infty,1)$-category $\bar{Sh}_{(\infty,1)}(S)$ which is the [[hypercompletion]] of the $(\infty,1)$-category $Sh_{(\infty,1)}(S)$ of [[(∞,1)-sheaves]] on $S$. \end{itemize} Since with respect to the local or global injective model structure all objects are automatically cofibrant, this means that $\bar Sh_{(\infty,1)}(S)$ is the full sub-$(\infty,1)$-category of $PSh_{(\infty,1)}(S)$ on simplicial presheaves which are fibrant with respect to the local injective model structure: these are the [[∞-stacks]] in this model. By the general properties of [[localization of an (∞,1)-category]] there should be a class of morphisms $f : Y \to X$ in $PSh_{(\infty,1)}(S)$ -- hence between injective-fibrant objects in $[S^{op}, PSh(S)]$ -- such that the simplicial presheaves representing $\infty$-stacks are precisely the [[local objects]] with respect to these morphisms. The general idea of descent in this simplicial context is the precise analog of the situation for ordinary sheaves, but with ordinary [[limit|(co)limits]] replaced everywhere with the [[limit in quasi-categories|(∞,1)-categorical (co)limits]], which in terms of the [[presentable (infinity,1)-category|presentation]] by the [[model structure on simplicial presheaves]] amounts to the [[homotopy limit|homotopy (co)limit]]. So for $Y \to X$ a morphism of simplicial presheaves, the condition that a simplicial presheaf $A$ is [[local object|local]] with respect to it, hence satisfies descent with respect to it, is generally that \begin{displaymath} \begin{aligned} RHom(X,A) \stackrel{}{\to} & RHom(Y,A) \\ & \simeq RHom(hocolim_n Y_n, A) \\ & \simeq holim_n RHom(Y_n, A) \\ & =: holim_n A(Y_n) \end{aligned} \end{displaymath} is a weak equivalence, where $RHom$ denotes the corresponding $(\infty,1)$-categorical hom, i.e. the derived hom with respect to the [[model structure on simplicial presheaves]] -- for instance the ordinary simplicial hom if both $Y$ and $A$ are fibrant with respect to the given model structure. The details on which morphisms $Y \to X$ one needs to check against here have been worked out in \begin{itemize}% \item D. Dugger, S. Hollander, D. Isaksen, \emph{Hypercovers and simplicial presheaves} (\href{http://hopf.math.purdue.edu//Dugger-Hollander-Isaksen/hypspre.pdf}{pdf}) \end{itemize} We now describe central results of that article. \begin{udefn} For $X \in S$ an object in the [[site]] regarded as a simplicial presheaf and $Y \in [S^{op}, SSet]$ a simplicial presheaf on $S$, a morphism $Y \to X$ is a \textbf{[[hypercover]]} if it is a \emph{local acyclic fibration}, i.e. of for all $V \in S$ and all diagrams \begin{displaymath} \itexarray{ \Lambda^k[n]\otimes V &\to & Y \\ \downarrow && \downarrow \\ \Delta^n\otimes V &\to& X } \;\; respectively \;\, \itexarray{ \partial \Delta^n\otimes V &\to & Y \\ \downarrow && \downarrow \\ \Delta^n\otimes V &\to& X } \end{displaymath} there exists a covering [[sieve]] $\{U_i \to V\}$ of $V$ with respect to the given [[Grothendieck topology]] on $S$ such that for every $U_i \to V$ in that [[sieve]] the pullback of the abve diagram to $U$ has a lift \begin{displaymath} \itexarray{ \Lambda^k[n]\otimes U_i &\to & Y \\ \downarrow &\nearrow & \downarrow \\ \Delta^n\otimes U_i &\to& X } \;\; respectively \;\, \itexarray{ \partial \Delta^n\otimes U_i &\to & Y \\ \downarrow &\nearrow& \downarrow \\ \Delta^n\otimes U_i &\to& X } \,. \end{displaymath} \end{udefn} If $S$ is a [[Verdier site]] then every such hypercover $Y \to X$ has a refinement by a hypercover which is cofibrant with respect to the projective global [[model structure on simplicial presheaves]]. We shall from now on make the assumption that the hypercovers $Y \to X$ we discuss are cofibrant in this sense. These are called \emph{split hypercovers}. (This works in many cases that arise in practice, see the discussion after \href{http://hopf.math.purdue.edu//Dugger-Hollander-Isaksen/hypspre.pdf#page=29}{DHI, def. 9.1}.) \begin{uprop} The objects of $Sh_{(\infty,1)}(S)$ -- i.e. the fibrant objects with respect to the projective model structure on $[S^{op}, SSet]$ -- are precisely those objects $A$ of $PSh_{(\infty,1)}(S)$ -- i.e. [[Kan complex]]-valued simplicial presheaves -- which \textbf{satisfy descent for all split hypercovers}, i.e. those for which for all split hypercover $f : Y \to X$ in $[S^{op}, SSet]$ we have that \begin{displaymath} [S^{op}, SSet](X,A) \stackrel{\simeq}{\to} [S^{op}, SSet](Y,A) \end{displaymath} is a [[model structure on simplicial sets|weak equivalence of simplicial sets]]. \end{uprop} \begin{proof} This is \href{http://hopf.math.purdue.edu//Dugger-Hollander-Isaksen/hypspre.pdf#page=3}{DHI, thm 1.3} formulated in the light of \href{http://hopf.math.purdue.edu//Dugger-Hollander-Isaksen/hypspre.pdf#page=9}{DHI, lemma 4.4 ii)}. \end{proof} Notice that by the [[co-Yoneda lemma]] every simplicial presheaf $F : S^{op} \to SSet$, which we may regard as a presheaf $F : \Delta^{op}\times S^{op} \to Set$, is isomorphic to the [[weighted limit|weighted colimit]] \begin{displaymath} F \simeq colim^\Delta F_\bullet \end{displaymath} which is equivalently the [[end|coend]] \begin{displaymath} F \simeq \int^{[n] \in \Delta} \Delta^n \cdot F_n \,, \end{displaymath} where $F_n$ is the Set-valued presheaf of $n$-cells of $F$ regarded as an $SSet$-valued presheaf under the inclusion $Set \hookrightarrow SSet$, and where the [[SimpSet|SSet]]-weight is the canonical cosimplicial simplicial set $\Delta$, i.e. for all $X \in S$ \begin{displaymath} F : X \mapsto \int^{[n] \in \Delta} \Delta^n \times F(X)_n \,. \end{displaymath} In particular therefore for $A$ a [[Kan complex]]-valued presheaf the descent condition reads \begin{displaymath} [S^{op}, SSet](X,A) \stackrel{\simeq}{\to} [S^{op}, SSet](colim^\Delta Y_\bullet,A) \simeq lim^\Delta [S^{op}, SSet](Y_\bullet,A) \,. \end{displaymath} With the shorthand notation introduced above the \textbf{descent condition} finally reads, for all global-injective fibrant simplicial presheaves $A$ and hypercovers $U \to X$: \begin{displaymath} A(X) \stackrel{\simeq}{\to} lim^\Delta A(Y_\bullet) \,. \end{displaymath} The right hand here is often denoted $Desc(Y_\bullet \to X, A)$, in which case this reads \begin{displaymath} A(X) \stackrel{\simeq}{\to} Desc(Y_\bullet \to X, A) \,. \end{displaymath} \hypertarget{descent_for_strict_groupoid_valued_presheaves}{}\subsection*{{Descent for strict $\omega$-groupoid valued presheaves}}\label{descent_for_strict_groupoid_valued_presheaves} While simplicial sets are a very convenient model for general reasoning about higher weak categories and [[∞-groupoids]], often concrete computations in particular with $(\infty)$-groupoids are more convenient in the context of more strictified models. Notably, by the generalized [[Dold-Kan correspondence]] the [[oriental|? nerve]] injects [[crossed complex]]es -- nonabelian generalizations of [[chain complex]]es of abelian groups which are equivalent to [[strict ∞-groupoids]] -- to simplicial sets \begin{displaymath} CrsCmplx \stackrel{\simeq}{\to} Str \omega Grpd \stackrel{N}{\to} SSet \,. \end{displaymath} Since for instance something as simple as an abelian group $A$ regarded as a complex of groups in degree $n$ (hence as an $n$-group) already bcomes a somewhat involved object to understand under the nervet operation, \emph{it is desireable to have a means to control descent for simplicial presheaves which happen to factor through the $\omega$-nerve directly in the context of $Str \omega Cat$.} In his work on descent \begin{itemize}% \item Ross Street, \emph{Categorical and combinatorial aspects of descent theory}, \href{http://arxiv.org/abs/math.CT/0303175}{arXiv:math.CT/0303175} \end{itemize} Ross Street considered presheaves with values in [[strict ∞-categories]] \begin{displaymath} A : S^{op} \to Str \omega Cat \end{displaymath} and declared the descent $\omega$-category with respect to a simplicial object $Y_\bullet : \Delta^{op} \to S$ to be the [[weighted limit]] in $Str\omega-Cat$-[[enriched category theory]] \begin{displaymath} lim^{F \Delta} A(U^\bullet) \,, \end{displaymath} where $O := F \Delta : \Delta \to Str \omega Cat$ are the [[orientals]], i.e. the free $\omega$-categories on the simplicial [[simplex|simplices]] \begin{displaymath} O = F \circ \Delta \,, \end{displaymath} where $F : SSet \to Str\omega Cat$ is the [[right adjoint]] to the [[oriental|∞-nerve]] $N : Str \omega Cat \to SSet$. The two precscriptions \begin{displaymath} \itexarray{ lim^\Delta N A(U^\bullet) & in SSet \\ \\ lim^{F \Delta} A(U^\bullet) & in Str \omega Grpd } \end{displaymath} have a very similar appearance. The following theorem asserts if and when they are actually equivalent. \begin{utheorem} There exists a canonical comparison map \begin{displaymath} N(Desc_{Street}(U^\bullet, A)) := N(lim^{F \Delta} A(U^\bullet)) \;\;\;\stackrel{\;\;\;\;\;\;\;\;\;}{\hookrightarrow}\;\;\; Desc_{simp}(U^\bullet, N \circ A) := holim_\bullet N(A(U^\bullet)) \,. \end{displaymath} This is a [[model structure on simplicial sets|weak equivalence]] of [[Kan complex]]es if the cosimplicial simplicial set $N(A(U^\bullet))$ is [[Reedy category|Reedy fibrant]]. \end{utheorem} \begin{proof} The full proof is given at [[Verity on descent for strict omega-groupoid valued presheave|Verity on descent for strict omega-groupoid valued presheaves]]. \end{proof} \hypertarget{AsGluing}{}\subsection*{{Descent in terms of gluing conditions}}\label{AsGluing} We unwrap the expression \begin{displaymath} lim^\Delta A(Y_\bullet) \end{displaymath} for the descent data for a presheaf $A$ with respect to a (hyper)cover $Y \to X$ This [[weighted limit]] (whether taken in $SSet$- or in $Str \omega Cat$-[[enriched category theory]]) is given by the [[end|coend]] \begin{displaymath} lim^W\Delta A(Y_\bullet) \simeq \int^{[n] \in \Delta} [\Delta^n, A(Y_n)] \,. \end{displaymath} Unwrapping what this means one finds that an object/vertex of this is a choice of $n$-simplex in each $A(Y_n)$, subject to conditions which say that the boundary of this $n$-simplex must be obtained from pullback of $A$ along the maps $Y_n \to Y_{[n-1]}$ of the $(n-1)$-simplex in $A(Y_{n-1})$ Namely an object in $lim^W\Delta A(Y_\bullet) \simeq \int^{[n] \in \Delta} [\Delta^n, A(Y_n)]$ is a commuting diagram \begin{displaymath} \itexarray{ \uparrow &&&& \uparrow && \uparrow \\ [2] &&&& \Delta^2 &\stackrel{f}{\to}& A(Y_2) \\ \uparrow &&&& \uparrow && \uparrow \\ [1] &&&& \Delta^1 &\stackrel{g}{\to}& A(Y_1) \\ \uparrow &&&& \uparrow && \uparrow \\ [0] &&&& \Delta^0 &\stackrel{a}{\to}& A(Y_0) } \end{displaymath} where the vertical arrows indicate all the simplicial maps of the cosimplicial objects $\Delta$ and $A(Y_\bullet)$. So this is \begin{itemize}% \item on $Y_0$ an object $a \in A(Y_0)$; \item on ``double intersections'' (might be a cover of double intersections) $Y_1$ a gluing isomorphism $g : \pi_1^* a \to \pi_2^* a$ which identifies the two copies of $a$ obtained by pullback along the two projection maps $\pi_1, \pi_2 : U \times_X U \to U$. \item on ``triple intersections'' $Y_2$ a gluing 2-isomorphism $\itexarray{ && \pi_2^* a \\ & {}^{\pi_{12}^* g}\nearrow &\Downarrow^f& \searrow^{\pi_{23}^* g} \\ \pi_1^* a && \stackrel{\pi_{13}^* g}{\to} && \pi_3^* a }$ which identifies the different gluing 1-isomorphisms. \end{itemize} And so on. \hypertarget{gluing_for_ordinary_stacks}{}\subsubsection*{{Gluing for ordinary stacks}}\label{gluing_for_ordinary_stacks} The article \begin{itemize}% \item Sharon Hollander, \emph{A Homotopy Theory for Stacks} (\href{http://arxiv.org/abs/math.AT/0110247}{arXiv}) \end{itemize} spells out how the familiar formulation of the descent condition for ordinary [[stacks]] is equivalent to the corresponding descent condition for simplicial presheaves, discussed above. \hypertarget{codescent}{}\subsection*{{Codescent}}\label{codescent} Sometimes one wishes to compute the descent objects for presheaves of the form \begin{displaymath} [B(-), A] : S^{op} \to SSet \,, \end{displaymath} where $B : S \to [S^{op}, SSet]$ is a given presheaf-valued co-presheaf. For instance in the context of [[schreiber:Differential Nonabelian Cohomology|differential nonabelian cohomology]] one is interested in the co-presheaf that assigns [[fundamental ∞-groupoids]] \begin{displaymath} B := \Pi : U \mapsto (V \mapsto S(V \times \Delta^\bullet, U)) \end{displaymath} in which case the presheaf \begin{displaymath} [\Pi(-),A] \end{displaymath} would assign to $U \in S$ the pre-$\infty$-stack of ``trivial $A$-principial bundles with flat connection''. For $Y \to X$ a given (hyper)cover, the descent object for $[B(-), A]$ can be expressed as \begin{displaymath} \begin{aligned} Desc(Y_\bullet \to X, [B(-), A]) & := lim^\Delta [B(Y_\bullet),A] \\ & \simeq \int^{[n]\in \Delta} [ \Delta^n, [B(Y_n),A] ] \\ & \simeq \int^{[n]\in \Delta} [ \Delta^n \otimes B(Y_n), A] \\ & \simeq [\int_{[n] \in \Delta} \Delta^n \otimes B(Y_n)\;,\; A ] \\ & \simeq [colim^\Delta B(Y_\bullet), A] \end{aligned} \,. \end{displaymath} This way the descent for $[B(-),A]$ on the object $U = colim^\Delta U_\bullet$ is reexpressed as descent for $A$ of the $B$-modified object $colim^\Delta B(Y_\bullet)$. Following Street, this we may call the \textbf{codescent} object, as it co-represents descent. See also [[pseudo-extranatural transformation]]. \hypertarget{monadic_descent}{}\subsection*{{Monadic descent}}\label{monadic_descent} In some context the descent condion may algebraically be encoded in an [[adjunction]]. This leads to the notion of [[monadic descent]]. See there for more details. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{descent} \begin{itemize}% \item [[cover]] \item [[cohomological descent]] \item [[fibered category]], [[descent morphism]] \item [[Bénabou-Roubaud theorem]] \item [[monadic descent]]: \begin{itemize}% \item [[Sweedler coring]], [[Amitsur complex]], \item [[higher monadic descent]], [[descent in noncommutative algebraic geometry]] \end{itemize} \item [[van Kampen colimit]] \item [[descent along a torsor]], [[Schneider's descent theorem]] \end{itemize} \item [[sheaf]], [[(2,1)-sheaf]], [[2-sheaf]] [[(∞,1)-sheaf]], [[stack]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[A. Grothendieck]], M. Raynaud et al. \emph{Rev\^e{}tements \'e{}tales et groupe fondamental} ([[SGA1]]), Lecture Notes in Mathematics \textbf{224}, Springer 1971 (retyped as \href{http://arxiv.org/abs/math/0206203}{math.AG/0206203}; published version Documents Math\'e{}matiques \textbf{3}, Soci\'e{}t\'e{} Math\'e{}matique de France, Paris 2003) \item [[Angelo Vistoli]], \emph{Grothendieck topologies, fibered categories and descent theory} \href{http://www.ams.org/mathscinet-getitem?mr=2223406}{MR2223406}; \href{http://arxiv.org/abs/math/0412512}{math.AG/0412512} pp. 1--104 in Barbara Fantechi, Lothar G\"o{}ttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, Angelo Vistoli, \emph{Fundamental algebraic geometry. Grothendieck's [[FGA explained]]}, Mathematical Surveys and Monographs \textbf{123}, Amer. Math. Soc. 2005. x+339 pp. \href{http://www.ams.org/mathscinet-getitem?mr=2007f:14001}{MR2007f:14001} \item [[Ross Street]], \emph{Categorical and combinatorial aspects of descent theory}, \href{http://arxiv.org/abs/math.CT/0303175}{arXiv:math.CT/0303175} \item [[Jacob Lurie]], \emph{[[Descent Theorems]]} \item Daniel Sch\"a{}ppi, \emph{Descent via Tannaka duality}, \href{http://arxiv.org/abs/1505.05681}{arxiv/1505.05681} \end{itemize} A connection between the monadic descent and the descent in the language of fibered categories is proved in \begin{itemize}% \item [[Jean Bénabou]], [[Jacques Roubaud]], \emph{Monades et descente}, C. R. Acad. Sc. Paris, t. 270 (12 Janvier 1970), Serie A, 96--98, (\href{http://gallica.bnf.fr/ark:/12148/bpt6k480298g/f100}{link}, Biblioth\`e{}que nationale de France) \end{itemize} [[!redirects descent and codescent]] [[!redirects codescent]] [[!redirects codescent object]] [[!redirects codescent objects]] [[!redirects descent theory]] \end{document}