\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{descent for simplicial presheaves} \hypertarget{idea}{}\section*{{Idea}}\label{idea} [[simplicial presheaf|Simplicial presheaves]] equipped with the [[model structure on simplicial presheaves]] are one model/presentation for the [[(∞,1)-category of (∞,1)-sheaves]] on a given [[site]]. The fibrant object $\bar X$ that a [[simplicial presheaf]] $X : S^{op} \to SSet$ is weakly equivalent to with respect to this model structure is the [[∞-stackification]] of $X$. One expects that [[∞-stacks]]/[[(∞,1)-sheaves]] are precisely those [[(∞,1)-presheaves]] which satisfy a kind of [[descent]] condition. Precsisely what this condition is like for the particular model constituted by simplicial presheaves with the given Jardine [[model structure on simplicial presheaves]] was worked out in \begin{itemize}% \item Daniel Dugger, Sharon Hollander, Daniel C. Isaksen, \emph{Hypercovers and simplicial presheaves} (\href{http://www.math.uiuc.edu/K-theory/0563/}{web}) \end{itemize} and \begin{itemize}% \item To\"e{}n-Vezzosi, \emph{Segal topoi and stacks over Segal categories} (\href{http://poincare.dma.unifi.it/~vezzosi/papers/msri.pdf}{pdf}) \end{itemize} recalled as corollary 6.5.3.13 in \begin{itemize}% \item [[Jacob Lurie]], [[Higher Topos Theory]]. \end{itemize} The following is a summary of these results. The main point is that the fibrant objects are essentially those simplicial presheaves, which satisfy [[descent]] with respect not just to [[covers]], but to [[hypercovers]]. Localizations of [[(∞,1)-presheaves]] at [[hypercovers]] are called [[hypercompletions]] in \href{http://www.math.harvard.edu/~lurie/papers/highertopoi.pdf#page=534}{section 6.5.3} of [[Higher Topos Theory]]. Notice that in \href{http://www.math.harvard.edu/~lurie/papers/highertopoi.pdf#page=539}{section 6.5.4} of [[Higher Topos Theory]] it is argued that it may be more natural \emph{not} to localize at [[hypercovers]], but just at [[covers]] after all. \hypertarget{details}{}\section*{{Details}}\label{details} A well-studied class of models/presentations for an [[(∞,1)-category of (∞,1)-sheaves]] is obtained using the [[model structure on simplicial presheaves]] on an ordinary (1-categorical) [[site]] $S$, as follows. Let $[S^{op}, SSet]$ be the [[SimpSet|SSet]]-[[enriched category]] of [[simplicial presheaf|simplicial presheaves]] on $S$. Recall from [[model structure on simplicial presheaves]] that there is the \emph{global} and the \emph{local} injective simplicial model structure on $[S^{op}, SSet]$, and that the local model structure is a (Bousfield-)localization of the global model structure. According to \href{http://www.math.harvard.edu/~lurie/papers/highertopoi.pdf#page=528}{section 6.5.2} of [[Higher Topos Theory|HTT]] we have: \begin{itemize}% \item the full simplicial subcategory on fibrant-cofibrant objects of $[S^{op}, SSet]$ with respect to the \emph{global} injective model structure is (the [[SimpSet|SSet]]-[[enriched category]] realization of) the $(\infty,1)$-category $PSh_{(\infty,1)}(S)$ of [[(∞,1)-presheaves]] on $S$. \item the full simplicial subcategory on fibrant-cofibrant objects of $[S^{op}, SSet]$ with respect to the \emph{local} injective model structure is (the [[SimpSet|SSet]]-[[enriched category]] realization of) the $(\infty,1)$-category $\bar{Sh}_{(\infty,1)}(S)$ which is the [[hypercompletion]] of the $(\infty,1)$-category $Sh_{(\infty,1)}(S)$ of [[(∞,1)-sheaves]] on $S$. \end{itemize} Since with respect to the local or global injective model structure all objects are automatically cofibrant, this means that $\bar Sh_{(\infty,1)}(S)$ is the full sub-$(\infty,1)$-category of $PSh_{(\infty,1)}(S)$ on simplicial presheaves which are fibrant with respect to the local injective model structure: these are the [[∞-stacks]] in this model. By the general properties of [[localization of an (∞,1)-category]] there should be a class of morphisms $f : Y \to X$ in $PSh_{(\infty,1)}(S)$ -- hence between injective-fibrant objects in $[S^{op}, PSh(S)]$ -- such that the simplicial presheaves representing $\infty$-stacks are precisely the [[local objects]] with respect to these morphisms. This was worked out in \begin{itemize}% \item D. Dugger, S. Hollander, D. Isaksen, \emph{Hypercovers and simplicial presheaves} (\href{http://hopf.math.purdue.edu//Dugger-Hollander-Isaksen/hypspre.pdf}{pdf}) \end{itemize} We now describe central results of that article. \begin{udefn} For $X \in S$ an object in the [[site]] regarded as a simplicial presheaf and $Y \in [S^{op}, SSet]$ a simplicial presheaf on $S$, a morphism $Y \to X$ is a \textbf{[[hypercover]]} if it is a \emph{local acyclic fibration}, i.e. of for all $V \in S$ and all diagrams \begin{displaymath} \itexarray{ \Lambda^k[n]\otimes V &\to & Y \\ \downarrow && \downarrow \\ \Delta^n\otimes V &\to& X } \;\; respectively \;\, \itexarray{ \partial \Delta^n\otimes V &\to & Y \\ \downarrow && \downarrow \\ \Delta^n\otimes V &\to& X } \end{displaymath} there exists a covering [[sieve]] $\{U_i \to V\}$ of $V$ with respect to the given [[Grothendieck topology]] on $S$ such that for every $U_i \to V$ in that [[sieve]] the pullback of the abve diagram to $U$ has a lift \begin{displaymath} \itexarray{ \Lambda^k[n]\otimes U_i &\to & Y \\ \downarrow &\nearrow & \downarrow \\ \Delta^n\otimes U_i &\to& X } \;\; respectively \;\, \itexarray{ \partial \Delta^n\otimes U_i &\to & Y \\ \downarrow &\nearrow& \downarrow \\ \Delta^n\otimes U_i &\to& X } \,. \end{displaymath} \end{udefn} If $S$ is a [[Verdier site]] then every such hypercover $Y \to X$ has a refinement by a hypercover which is cofibrant with respect to the projective global [[model structure on simplicial presheaves]]. We shall from now on make the assumption that the hypercovers $Y \to X$ we discuss are cofibrant in this sense. These are called \emph{split hypercovers}. (This works in many cases that arise in practice, see the discussion after \href{http://hopf.math.purdue.edu//Dugger-Hollander-Isaksen/hypspre.pdf#page=29}{DHI, def. 9.1}.) \begin{uprop} The objects of $Sh_{(\infty,1)}(S)$ -- i.e. the fibrant objects with respect to the projective model structure on $[S^{op}, SSet]$ -- are precisely those objects $A$ of $PSh_{(\infty,1)}(S)$ -- i.e. [[Kan complex]]-valued simplicial presheaves -- which \textbf{satisfy descent for all split hypercovers}, i.e. those for which for all split hypercover $f : Y \to X$ in $[S^{op}, SSet]$ we have that \begin{displaymath} [S^{op}, SSet](X,A) \stackrel{\simeq}{\to} [S^{op}, SSet](Y,A) \end{displaymath} is a [[model structure on simplicial sets|weak equivalence of simplicial sets]]. \end{uprop} \begin{proof} This is \href{http://hopf.math.purdue.edu//Dugger-Hollander-Isaksen/hypspre.pdf#page=3}{DHI, thm 1.3} formulated in the light of \href{http://hopf.math.purdue.edu//Dugger-Hollander-Isaksen/hypspre.pdf#page=9}{DHI, lemma 4.4 ii)}. \end{proof} Notice that by the [[co-Yoneda lemma]] every simplicial presheaf $F : S^{op} \to SSet$, which we may regard as a presheaf $F : \Delta^{op}\times S^{op} \to Set$, is isomorphic to the [[weighted limit|weighted colimit]] \begin{displaymath} F \simeq colim^\Delta F_\bullet \end{displaymath} which is equivalently the [[end|coend]] \begin{displaymath} F \simeq \int^{[n] \in \Delta} \Delta^n \cdot F_n \,, \end{displaymath} where $F_n$ is the Set-valued presheaf of $n$-cells of $F$ regarded as an $SSet$-valued presheaf under the inclusion $Set \hookrightarrow SSet$, and where the [[SimpSet|SSet]]-weight is the canonical cosimplicial simplicial set $\Delta$, i.e. for all $X \in S$ \begin{displaymath} F : X \mapsto \int^{[n] \in \Delta} \Delta^n \times F(X)_n \,. \end{displaymath} In particular therefore for $A$ a [[Kan complex]]-valued presheaf the descent condition reads \begin{displaymath} [S^{op}, SSet](X,A) \stackrel{\simeq}{\to} [S^{op}, SSet](colim^\Delta Y_\bullet,A) \simeq lim^\Delta [S^{op}, SSet](Y_\bullet,A) \,. \end{displaymath} With the shorthand notation introduced above the \textbf{descent condition} finally reads, for all global-injective fibrant simplicial presheaves $A$ and hypercovers $U \to X$: \begin{displaymath} A(X) \stackrel{\simeq}{\to} lim^\Delta A(Y_\bullet) \,. \end{displaymath} The right hand here is often denoted $Desc(Y_\bullet \to X, A)$, in which case this reads \begin{displaymath} A(X) \stackrel{\simeq}{\to} Desc(Y_\bullet \to X, A) \,. \end{displaymath} \hypertarget{formulation_in_terms_of_homotopy_limit}{}\subsection*{{formulation in terms of homotopy limit}}\label{formulation_in_terms_of_homotopy_limit} (expanded version of remark 2.1 in \href{http://hopf.math.purdue.edu//Dugger-Hollander-Isaksen/hypspre.pdf}{DHI}) Using the [[Bousfield-Kan map]] every simplicial presheaf $F$ is also weakly equivalent to the weighted limit over $F_\bullet$ with weight given by $N(\Delta/(-)) : \Delta \to SSet$. \begin{displaymath} lim^{N(\Delta/(-))} F_\bullet \stackrel{\simeq}{\to} lim^\Delta F_\bullet \,. \end{displaymath} But by the discussion at [[weighted limit]], the left hand computes the [[homotopy limit]] of $F_\bullet$ (since $F_\bullet$ is objectwise fibrant, since $F_n$ factors through $Set \hookrightarrow SSet$), hence we have a weak equivalence \begin{displaymath} holim F_\bullet \stackrel{\simeq}{\to} F \,. \end{displaymath} Often the descent condition is therefore formulated with the cover $U$ replaced by its homotopy limit, whence it reads \begin{displaymath} [S^{op}, SSet](X,A) \stackrel{\simeq}{\to} [S^{op}, SSet](hocolim U_\bullet,A) \,. \end{displaymath} With $A$ global-injective fibrant this is equivalent to \begin{displaymath} [S^{op}, SSet](X,A) \stackrel{\simeq}{\to} holim [S^{op}, SSet](U_\bullet,A) \,. \end{displaymath} Using the notation introduced above this becomes finally \begin{displaymath} A(X) \stackrel{\simeq}{\to} holim A(U_\bullet) \,. \end{displaymath} [[Note on Formatting|?]] \end{document}