\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{descent morphism} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{descent_and_locality}{}\paragraph*{{Descent and locality}}\label{descent_and_locality} [[!include descent and locality - contents]] \hypertarget{descent_morphisms}{}\section*{{Descent morphisms}}\label{descent_morphisms} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{the_case_of_codomain_fibration}{The case of codomain fibration}\dotfill \pageref*{the_case_of_codomain_fibration} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general_case}{General case}\dotfill \pageref*{general_case} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given a [[fibered category]], a morphism along which the induced comparison functor between the category of the descent data and the codomain fiber is fully faithful (equivalence of categories) is said to be a descent morphism (resp. effective descent morphism). \hypertarget{the_case_of_codomain_fibration}{}\subsection*{{The case of codomain fibration}}\label{the_case_of_codomain_fibration} \hypertarget{definition}{}\subsubsection*{{Definition}}\label{definition} Let $C$ be a [[category]] with [[pullbacks]]. For any [[morphism]] $p\colon A\to B$, we have an [[internal category]] $ker(p)$ defined by $A\times_B A \rightrightarrows A$ (the [[kernel pair]] of $p$). The category of [[descent data]] for $p$ is the category $C^{ker(p)}$ (the ``[[descent object]]'') of internal diagrams on this internal category. Explicitly, an object of $C^{ker(p)}$ is a morphism $C\to A$ together with an action $A\times_B C \to C$ satisfying suitable axioms. The evident internal functor $ker(p) \to B$ (viewing $B$ as a [[discrete category|discrete]] internal category) induces a \emph{comparison functor} $C^B \to C^{ker(p)}$. We say that $p$ is: \begin{itemize}% \item a \textbf{descent morphism} if this comparison functor is [[fully faithful functor|fully faithful]], and \item an \textbf{effective descent morphism} if this comparison functor is an [[equivalence of categories]]. \end{itemize} It is a little unfortunate that the more important notion of \emph{effective descent} has the longer name, but it seems unwise to try to change it (although the [[Elephant]] uses ``pre-descent'' and ``descent''). \hypertarget{properties}{}\subsubsection*{{Properties}}\label{properties} Let $C$ be a category with pullbacks. \begin{utheorem} $p\colon A\to B$ is a descent morphism if and only if $p$ is a [[pullback-stability|stable]] [[regular epimorphism]]. \end{utheorem} In particular, descent morphisms are closed under [[pullback]] and [[composition]]. Moreover, in a [[regular category]], the descent morphisms are precisely the regular epimorphisms. Perhaps more surprising is: \begin{utheorem} Effective descent morphisms are closed under pullback and composition. \end{utheorem} See (\hyperlink{ST}{ST}) and (\hyperlink{RST}{RST}) for proofs. \hypertarget{general_case}{}\subsection*{{General case}}\label{general_case} In general, [[descent]] is about higher [[sheaf]] conditions (i.e. [[stack]] conditions). More precisely, being an $n$-stack means that all covers in the base are effective $n$-categorical descent morphism. Hence the morphism being of effective descent is a building block, the single morphism case of a stack condition. Thus, being an effective descent morphism says that the corresponding fibered category is a 1-stack (``2-sheaf'') for the singleton covering family $p$. Similarly, $p$ is a descent morphism iff the codomain fibration is a pre-stack (that is, a 2-separated 2-presheaf) for $p$. More generally, we may use the terms ``descent morphism'' and ``effective descent morphism'' relativized to any [[fibration]] or [[indexed category]] rather than the codomain fibration. We can also, of course, generalize to higher categories: an [[n-category]] with pullbacks has an analogue of a ``codomain fibration'', and we can ask for stack conditions on it. This is most common in the case of [[(infinity,1)-categories]]; see the page [[descent]] for more information and links. Descent can sometimes (for this we need to have also the direct image functor) be rephrased in terms of the [[monadicity theorem]]; see [[monadic descent]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} If $C$ is [[exact category|exact]], or has stable [[reflexive coequalizers]], then every [[regular epimorphism]] is an effective descent morphism. (See, for instance, section B1.5 of the [[Elephant]].) In particular, this is the case for any [[topos]]. However, there are also important effective descent morphisms in non-exact categories. \begin{itemize}% \item In [[Top]], there is a characterization\ldots{} \item In the category [[Loc]] of [[locales]], every [[triquotient map]] is an effective descent morphism. These includes [[open map|open]] surjections and also [[proper map|proper]] surjections. \end{itemize} \ldots{} Of course, there are also many effective descent morphisms relative to fibrations other than the codomain fibration. If $A$ is a [[stack]] for a particular [[Grothendieck topology]], then every singleton cover in that topology will be, by definition, an effective descent morphism relative to $A$. A few important examples are: \begin{itemize}% \item Every [[fpqc site|fpqc cover]] of [[schemes]] is an effective descent morphism relative to the indexed category $QCoh(-)$ of [[quasicoherent sheaves]]. \end{itemize} \ldots{} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[descent]] \begin{itemize}% \item [[cover]] \item [[cohomological descent]] \item \textbf{descent morphism} \item [[monadic descent]], \begin{itemize}% \item [[Sweedler coring]] \item [[higher monadic descent]] \item [[descent in noncommutative algebraic geometry]] \end{itemize} \end{itemize} \item [[sheaf]], [[(2,1)-sheaf]], [[2-sheaf]] [[(∞,1)-sheaf]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item M. Sobral, [[Walter Tholen|W. Tholen]], \emph{Effective descent morphisms and effective equivalence relations}, Category Theory 1991, CMS Conference Proceedings \textbf{13} (1992), 421--433 \end{itemize} \begin{itemize}% \item J. Reiterman, M. Sobral, [[Walter Tholen|W. Tholen]], \emph{Composites of effective descent maps}, Cahiers \textbf{34} (1993), 193--207, \href{http://www.numdam.org/item?id=CTGDC_1993__34_3_193_0}{numdam} \end{itemize} [[!redirects descent morphism]] [[!redirects descent morphisms]] [[!redirects effective descent morphism]] [[!redirects effective descent morphisms]] [[!redirects descent map]] [[!redirects descent maps]] [[!redirects effective descent map]] [[!redirects effective descent maps]] \end{document}