\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{descent object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{locality_and_descent}{}\paragraph*{{Locality and descent}}\label{locality_and_descent} [[!include descent and locality - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{ForPresheaves}{For ordinary presheaves}\dotfill \pageref*{ForPresheaves} \linebreak \noindent\hyperlink{ForGroupoidValuedPresheaves}{For groupoid valued presheaves / pseudofunctors}\dotfill \pageref*{ForGroupoidValuedPresheaves} \linebreak \noindent\hyperlink{for_simplicial_presheaves}{For simplicial presheaves}\dotfill \pageref*{for_simplicial_presheaves} \linebreak \noindent\hyperlink{for_strict_categoryvalued_presheaves}{For strict $\omega$-category-valued presheaves}\dotfill \pageref*{for_strict_categoryvalued_presheaves} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Quite generally, one says that an [[object]] $A$ in a [[category]] or [[higher category theory|higher category]] $\mathcal{C}$ satisfies \emph{[[descent]]} along a given [[morphism]] $p : \hat X \to X$ in $\mathcal{C}$ if it is a \emph{$p$-[[local object]]}, hence if the induced map -- the \emph{[[descent morphism]]} \begin{displaymath} \mathcal{C}(X, A) \to \mathcal{C}(\hat X, A) \end{displaymath} is an [[equivalence]]. We may read this as saying that every collection of $A$-data on $\hat X$ ``[[descent|descends]]'' down along $p$ to $X$. In the context the [[hom object]] $\mathcal{C}(\hat X, A)$ is also called the \textbf{descent object}. While roughly synonyms, typically one speaks of ``descent'' instead of [[local objects|locality]] when $\mathcal{C}$ is a category of [[presheaves]] or higher presheaves ([[(2,1)-presheaves]], [[(∞,1)-presheaves]], [[(∞,n)-presheaves]]). In this case, in turn, the objects $X$ above are typically [[representables]] of a given [[site]] (or higher site) and $\hat X$ is either the [[Cech nerve]] of a [[covering]] family with respect to a chosen [[coverage]]/[[Grothendieck topology]], or is the [[colimit]] of this ech nerve: the corresponding [[sieve]] (the \emph{[[codescent object]]}). The [[descent]] condition then says that the presheaf $X$ satisfies the [[sheaf]]-condition ([[stack]]-condition, [[(∞,1)-sheaf]]/[[∞-stack]]-condition, etc.) for this given covering family. Whether one takes $\hat X$ to be the [[Cech nerve]] or the corresponding [[sieve]] depends on [[homotopy theory|homotopical]] details of the setup. If $\mathcal{C}$ is taken to be an [[(∞,1)-category]], then it typically does not matter. But if $\mathcal{C}$ is instead just a [[homotopical category]] presenting the desired higher category, then $\hat X$ needs to satisfy some extra conditions (such as [[cofibrant object|cofibrancy]]) to ensure that $\mathcal{C}(\hat X, A)$ is indeed the correct descent object, and not too small. For instance when working with the [[model structure on functors|injective]] [[model structure on simplicial presheaves]], every object is cofibrant and we can take $\hat X$ to be the [[sieve]]. But when working with the projective model structure then (as discussed there) $\hat X$ needs to be [[split hypercover|split]], which means that we need to use the [[Cech nerve]] and even ensure that the corresponding [[covering family]] behaves like a [[good cover]] (or, more generally, form a [[split hypercover]]). \hypertarget{details}{}\subsection*{{Details}}\label{details} \hypertarget{ForPresheaves}{}\subsubsection*{{For ordinary presheaves}}\label{ForPresheaves} For ordinary [[presheaves]], a descent object is a set of \emph{[[matching families]]} More in detail, let $C$ be a [[site]], let $X \in C$ be an object, $\{U_i \to X\}$ a [[covering]] family and $S(\{U_i\}) \hookrightarrow X$ the corresponding [[sieve]]. Then for $A : C^{op} \to Set$ any [[presheaf]] on $C$, the descent object with respect to this covering is the [[hom set]] \begin{displaymath} Desc(\{U_i\}, A) = PSh(S(\{U_i\}), A) \,. \end{displaymath} This is discussed in detail at [[sheaf]], so just briefly: the [[sieve]] may be realized as the [[coequalizer]] \begin{displaymath} \coprod_{i, j} U_i \cap U_j \stackrel{\to}{\to} \coprod_i U_i \to S(\{U_i\}) \,. \end{displaymath} Accordingly the hom out of this realizes the descent object as the [[equalizer]] \begin{displaymath} Desc(\{U_i\}, A) \to \prod_{i} A(U_i) \stackrel{\to}{\to} \prod_{i, j} A(U_i \cap U_j) \,. \end{displaymath} Writing this out in components shows that this is the set of [[matching families]]. If the [[descent morphism]] \begin{displaymath} [C^{op}, Set](X, A) \to Desc(\{U_i\}, A) \end{displaymath} is an [[isomorphism]] one says that $A$ satisfies the [[sheaf]]-condition with respect to the [[cover]] $\{U_i \to X\}$. If this morphism is only a [[monomorphism]] one says that $A$ satisfies the [[separated presheaf]]-condition. \hypertarget{ForGroupoidValuedPresheaves}{}\subsubsection*{{For groupoid valued presheaves / pseudofunctors}}\label{ForGroupoidValuedPresheaves} For $A : C^{op} \to$ [[Grpd]] a [[2-functor]] (hence a ``[[pseudofunctor]]'' if $C$ is an ordinary [[category]] regarded as a [[2-category]]) and for $\hat X \to X$ a [[covering]] morphism in $C$, the descent object now is a [[groupoid]] \begin{displaymath} Desc(\hat X, A) := [C^{op}, Grpd](\hat X, A) \in Grpd \,. \end{displaymath} If the [[descent morphism]] \begin{displaymath} [C^{op}, Grpd](X, A) \to Desc(\hat X, A) \end{displaymath} is an [[equivalence of groupoids]], one says that $A$ satisfies the \emph{[[(2,1)-sheaf]]}- or \emph{[[stack]]}-condition with respect to the [[cover]] $\hat X \to X$. If it is just a [[full and faithful functor]], one says (sometimes) that $A$ satisfies the condition for a \emph{[[separated prestack]]} with respect to this cover. Similar statements hold for the case of 2-functors with values in [[Cat]]. Here one also often talks about a \emph{[[stack]]-condition}, though less ambiguous would be to speak of \emph{[[2-sheaf]]-conditions}. By the [[Grothendieck construction]] one may identifiy pseudofunctors $C^{op} \to Cat$ equivalently with [[fibered categories]] (or just [[categories fibered in groupoids]] for $C^{op} \to Grpd$) over $C$, and all of the above has analogs in this dual description. \hypertarget{for_simplicial_presheaves}{}\subsubsection*{{For simplicial presheaves}}\label{for_simplicial_presheaves} See \emph{[[descent]]}. \hypertarget{for_strict_categoryvalued_presheaves}{}\subsubsection*{{For strict $\omega$-category-valued presheaves}}\label{for_strict_categoryvalued_presheaves} In (\hyperlink{Street}{Street}) a proposal for a definition of descent objects for presehaves with values in [[strict ∞-categories]] was proposed. Additional homotopical conditions to ensure that this gives the right answer were discussed in (\hyperlink{Verity}{Verity}). \begin{defn} \label{}\hypertarget{}{} Let $C$ be a category, let $E_1\stackrel{\stackrel{d_1}{\to}}{\stackrel{d_0}{\to}}E_0\xrightarrow{p}B$ be morphisms where the parallel arrows $\mathcal{E}:=\{d_0,d_1:E_1\to E_0\}$ are seen as \emph{a} diagram, let $X\in C_0$ be an object. Applying the functor $C(-,X)$ to this sequence gives \begin{displaymath} C(E_1,X)\xleftarrow{C(d_0,X),C(d_1,X)}C(E_0,X)\xleftarrow{C(p,X)}C(B,X) \end{displaymath} If this diagram is for all $X\in C_0$ an equalizer diagram $B$ is called \textbf{codescent object for} the diagram $\mathcal{E}$. \end{defn} \begin{defn} \label{}\hypertarget{}{} Let $E_0\to\E_1\to E_2$ be a diagram where $E_0\xrightarrow{\partial_0}E_1\xrightarrow{\partial_0}E_2$, $E_0\xleftarrow{\iota_0}E_1\xrightarrow{\partial_1}E_2$, $E_0\xrightarrow{\partial_1}E_1\xrightarrow{\partial_2}E_2$ satisfying $\partial_s\partial_r=\partial_r\partial_{s-1}$ for $r\lt s$ and $\iota_0\partial_0=\iota_0\partial_1$ (these are the identities characterizing a truncated cosimplicial category). Then the \textbf{descent category} $\Desc E$ of $E$ has as objects pairs $(F,f)$ where $F\in E_0$, $f:\partial_1 F\to \partial_0 F$ such that $\iota_0 f=\id_F$ and $\partial_0 f=\partial_2( f)\circ \partial_0 (f)$ and a morphism $(F,f)\to (G,g)$ consists of a morphism $(u:F\to G)\in E_1$ such that $\partial_0 u\circ f=g\circ \partial_1 u$. \end{defn} \begin{instance} \label{}\hypertarget{}{} Let $A$, $X$ be categories. Then $\Desc [N(A),X]\cong[A,X]$ \end{instance} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} See also \emph{[[descent]]} and [[category of descent data]]. Discussion related to the computation of descent objects is also at \emph{[[model structure on cosimplicial simplicial sets]]}. \hypertarget{references}{}\subsection*{{References}}\label{references} See also the references at [[descent]]. A definition of descent objects for presheaves with values in strict $\omega$-categories was proposed in \begin{itemize}% \item [[Ross Street]], \href{http://arxiv.org/pdf/math/0303175}{Categorical and combinatorial aspects of descent theory} \end{itemize} A discussion of a missing condition on this definition is in \begin{itemize}% \item [[Dominic Verity]], \emph{Relating descent notions} (\href{http://ncatlab.org/nlab/files/VerityDescent.pdf}{pdf} [[Verity on descent for strict omega-groupoid valued presheaves|nLab]]) \end{itemize} [[!redirects descent objects]] [[!redirects descent data]] \end{document}