\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{determinant line bundle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{DeterminantLineBundles}{Definition}\dotfill \pageref*{DeterminantLineBundles} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{quillens_determinant_line_bundle}{Quillen's determinant line bundle}\dotfill \pageref*{quillens_determinant_line_bundle} \linebreak \noindent\hyperlink{determinant_bundle_on_the_grassmannian}{Determinant bundle on the Grassmannian}\dotfill \pageref*{determinant_bundle_on_the_grassmannian} \linebreak \noindent\hyperlink{comparing_quillens_and_segals_determinant_line_bundles}{Comparing Quillen's and Segal's determinant line bundles}\dotfill \pageref*{comparing_quillens_and_segals_determinant_line_bundles} \linebreak \noindent\hyperlink{pfaffian_line_bundle}{Pfaffian line bundle}\dotfill \pageref*{pfaffian_line_bundle} \linebreak \noindent\hyperlink{from_fermionic_path_integrals}{From fermionic path integrals}\dotfill \pageref*{from_fermionic_path_integrals} \linebreak \noindent\hyperlink{relation_to_theta_function}{Relation to theta function}\dotfill \pageref*{relation_to_theta_function} \linebreak \noindent\hyperlink{relation_to_vacuum_energy_partition_function}{Relation to vacuum energy, partition function}\dotfill \pageref*{relation_to_vacuum_energy_partition_function} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{DeterminantLineBundles}{}\subsection*{{Definition}}\label{DeterminantLineBundles} Let $V$ and $W$ be two [[vector space]]s of [[dimension]] $n = dim V = dim W$ and \begin{displaymath} T : V \to W \end{displaymath} a [[linear map]]. Write $\wedge^n V$ and $\wedge^n W$ for the \emph{top exterior power} of these vector spaces, the skew-symmetrized $n$th [[tensor algebra|tensor power]] of $V$ and $W$. These are 1-dimensional vector spaces, hence [[line]]s over the ground field. The linear map $T$ induces a linear map \begin{displaymath} det T : \wedge^n V\to \wedge^n W \end{displaymath} between these lines. This is the \textbf{[[determinant]]} of $T$. More specifically, if $V = W$ (being of the same finite dimension, both are necessarily [[isomorphic]] but not necessarily canonically so) then $det T : \wedge^n V \to \wedge^n V$ is a linear endomorphism of a 1-dimensional vector space and by the equivalence \begin{displaymath} End(\wedge^n V) \simeq k \end{displaymath} of such endomorphisms with the ground [[field]] $k$ is identified with an element in $k$ \begin{displaymath} det T \in k \,. \end{displaymath} This is the standard meaning of the \textbf{determinant} of a linear endomorphism. Notice that the determinant construction: \begin{displaymath} det : (V \stackrel{T}{\to} W) \mapsto (\wedge^n V \stackrel{det T}{\to} \wedge^n W) \end{displaymath} is a [[functor]] from the [[category]] [[Vect]] to itself \begin{displaymath} det : Vect \to Vect \,. \end{displaymath} Any such functor $F : Vect \to Vect$ with certain continuity assumptions induces an endo-functor on the category of [[vector bundle]]s $VectBund(X)$ over an arbitrary [[manifold]] $X$. Concretely, if a vector bundle $E \to X$ is given by a [[Cech cohomology|Cech cocycle]] \begin{displaymath} \itexarray{ C(U_i) &\stackrel{(g_{i j})}{\to}& \mathbf{B} GL(n) &\to& Vect \\ \downarrow^{\mathrlap{\simeq}} \\ X } \end{displaymath} with respect to an [[open cover]] $\{U_i \to X\}$ (see [[principal bundle]] and [[associated bundle]] for details), hence by transition functions \begin{displaymath} (g_{i j} \in C(U_i \cap U_j, GL(n))) \end{displaymath} with values in the [[general linear group]], its image under $det : VectBund(X) \to VectBund(X)$ is the bundle with transition functions the determinants of these transition functions \begin{displaymath} (det g_{i j} \in C(U_i \cap U_j, GL(1) \simeq k^\times)) \,. \end{displaymath} This are the transition functions for the bundle $\wedge^\bullet E \to X$ which is fiberwise the top exterior power of $E \to X$. This is the \textbf{[[determinant line]] bundle} of $E$. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{uprop} Let \begin{displaymath} E : X \stackrel{\simeq}{\leftarrow} C(U_i) \stackrel{g_{i j}}{\to} \mathbf{B} U(n) \end{displaymath} be a [[unitary group]]-[[principal bundle]] (to which is canonically [[associated bundle|associated]] a rank-$n$ complex [[vector bundle]]). Then the single [[characteristic class]] \begin{displaymath} [det E] \in H^2(X, \mathbb{Z}) \end{displaymath} of its determinant [[circle bundle]] \begin{displaymath} det E : X \stackrel{\simeq}{\leftarrow} C(U_i) \stackrel{det g_{i j}}{\to} \mathbf{B} U(1) \end{displaymath} is the first [[Chern class]] of $E$ \begin{displaymath} [det E] = c_1(E) \,. \end{displaymath} Moreover, if $X$ is a [[smooth manifold]] and $(g_{i j}, A_i)$ is the data of a [[connection on a bundle]] $(E, \nabla)$ on $E$ then $(det g_{i j}, tr A_i)$ (where we take the [[trace]] $tr : \mathfrak{u}(n) \to \mathfrak{u}(1)$ on the [[Lie algebra]] of the [[unitary group]]) is a [[circle n-bundle with connection|line bundle with connection]] that refines the first Chern-class to [[ordinary differential cohomology]]. In other words, this is the image under the refined [[Chern-Weil homomorphism]] of $(E, \nabla)$ induced by the canonical unary [[invariant polynomial]] on $\mathfrak{u}(n)$. \end{uprop} An explicit version of this statement is for instance in (\hyperlink{GriffithsHarris}{GriffithsHarris, p. 414}). One can now look at operators $T:E\to F$ where $E,F$ are vector bundles of rank $n$ and the induced operators $\Lambda^n T : \Lambda^n E\to \Lambda^n F$ which can be considered as elements $det T\in (\Lambda^n E)^*\otimes\Lambda^n F$. Even more important is the case of when $X$ is replaced by an appropriate [[moduli space of connections]], instantons, holomorphic structures or some other objects related to Fredholm operators for which the determinants can be defined. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{quillens_determinant_line_bundle}{}\subsubsection*{{Quillen's determinant line bundle}}\label{quillens_determinant_line_bundle} There is a specific version called \textbf{Quillen's determinant line bundle} which is certain [[line bundle]] over the [[moduli space of complex structures]] on a fixed smooth vector bundle $E$ over a fixed [[Riemann surface]] $M$. A complex structure on the bundle corresponds to an operator which in local coordinates looks as $D = d\bar{z}(\partial_z+\alpha(z))$ where $\alpha(z)$ is a smooth matrix valued function. The set of such operators is an affine space $\mathcal{A}$ whose underlying vector space is the space of $(0,1)$-End-valued forms $\Omega^{0,1} (End M)$. Then again a determinant is an element of a line $\mathcal{L}_D = \lambda(Ker D)^*\otimes \lambda(Coker D)$ where $\lambda$ is taking the top exterior power. Now one has a family $\mathcal{L}_D$ depending on $D$, which determines a holomorphic line bundle over $\mathcal{A}$. This is the \textbf{determinant line bundle}. If we had a trivialization of the Quillen's determinant line bundle, then we could identify every section with a holomorphic function on the base space, hence a holomorphic rule giving a number to a Cauchy-Riemann operator. For this one restricts first to the component consisting of the operators with the zero Fredholm index. Next, one considers the corresponding [[Laplace operator]] $D^* D$ and its [[functional determinant]] related to the [[zeta function of an elliptic differential operator]]. (This is related to the [[analytic torsion]]). \hypertarget{determinant_bundle_on_the_grassmannian}{}\subsubsection*{{Determinant bundle on the Grassmannian}}\label{determinant_bundle_on_the_grassmannian} Let $Gr_k(V)$ be the [[Grassmannian]] of $k$-dimensional subspaces of a finite dimensional vector space $V$. Let $W\subset V$ be a point in $Gr_k(V)$ and $\Lambda^k(W)$ its top exterior power; it is a fiber of the bundle $Det$ over $Gr_k(V)$. The determinant bundle $Det$ has no non-zero holomorphic global sections. Consider its dual $Det^*$ with fiber $\Lambda^k(W)^*$ over $W$. Then the space of of global holomorphic sections $\Gamma_{hol}(Det^*) \cong \Lambda^k(V^*)$. This construction can be suitably extended for the Segal Grassmannian, where $V= V_+\oplus V_-$ is a separable Hilbert space equipped with a polarization, see chapter 7 and especially 7.7 in the Pressley-Segal book listed below. \hypertarget{comparing_quillens_and_segals_determinant_line_bundles}{}\subsubsection*{{Comparing Quillen's and Segal's determinant line bundles}}\label{comparing_quillens_and_segals_determinant_line_bundles} The determinant line bundle of Quillen is in fact related to a variant of Segal's determinant bundle on the ``semiinfinite'' Grassmannian. Namely one considers instead $Gr_{cpt}(H)$ which is the set (space eventually) of closed supspaces $W\subset H$ where the projection $W\to H_+$ is [[Fredholm operator|Fredholm]] and $W\to H_-$ is [[compact operator|compact]]; then one follows the Segal's prescription to define $Det$ on $Gr_{cpt}(H)$. Notice that $Gr_{cpt}(H)$ is not a homogeneous space. Now there is a span of maps with contractible fibers \begin{displaymath} Gr_{cpt}(H)\leftarrow \mathcal{B}\to Fred(H_+). \end{displaymath} The Quillen's determinant line bundle is defined in general on the whole $Fred(H_+)$ and its pullback to $\mathcal{B}$ is isomorphic to the pullback of the determinant bundle on $Gr_{cpt}(H)$; in fact the Quillen's version can be reconstructed from this pullback by certain quotienting construction. \hypertarget{pfaffian_line_bundle}{}\subsubsection*{{Pfaffian line bundle}}\label{pfaffian_line_bundle} In dimens\^i{}on $8k+2$ for $k \in \mathbb{N}$ the determinant line bundle has a canon\^i{}cal square root line bundle, the [[Pfaffian line bundle]]. \hypertarget{from_fermionic_path_integrals}{}\subsubsection*{{From fermionic path integrals}}\label{from_fermionic_path_integrals} See at \emph{[[fermionic path integral]]}. \hypertarget{relation_to_theta_function}{}\subsubsection*{{Relation to theta function}}\label{relation_to_theta_function} the determinant of the Dirac operator is, up to choice of isomorphism, the [[theta function]]-section of the determinant line bundle (\hyperlink{Freed87}{Freed 87, pages 30-31}). \hypertarget{relation_to_vacuum_energy_partition_function}{}\subsubsection*{{Relation to vacuum energy, partition function}}\label{relation_to_vacuum_energy_partition_function} See at \emph{[[vacuum energy]]} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[density bundle]] \item [[theta function]] \end{itemize} [[!include square roots of line bundles - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The relation between determinant line bundles and the first Chern class is stated explicitly for instance on p. 414 of \begin{itemize}% \item Griffiths and Harris, \emph{Principles of algebraic geometry} \end{itemize} Literature on determinant line bundles of infinite-dimensional bundles includes the following: \begin{itemize}% \item [[Daniel Quillen|D.G. Quillen]], \emph{Determinants of Cauchy-Riemann operators over a Riemann surface}, Funkcionalnii Analiz i ego Prilozhenija \textbf{19} (1985), 37-41, (\href{http://www.mathnet.ru/php/getFT.phtml?jrnid=faa&paperid=1334&volume=19&year=1985&issue=1&fpage=37&what=fullt&option_lang=eng}{pdf} of Russian version). reviewed e.g. in Arlo Caine, \emph{Quillen's construction of Determinants of Cauchy--Riemann operators over Riemann Surfaces}, 2005 (\href{http://web.archive.org/web/20150326122017/http://www.cpp.edu/~jacaine/pdf/quillen_determinant_notes.pdf}{pdf}) \item [[Michael Atiyah]], [[Isadore Singer]], \emph{Dirac operators coupled to vector potentials}, Proc. Nat. Acad. Sci. USA \textbf{81}, 2597-2600 (1984) (\href{http://www.pnas.org/content/81/8/2597.full.pdf}{pdf} at pnas site) \item [[Daniel Freed]], \emph{On determinant line bundles}, Math. aspects of [[string theory]], ed. S. T. Yau, World Sci. Publ. 1987, (\href{http://arxiv.org/abs/dg-ga/9505002}{dg-ga/9505002}, \href{http://www.math.utexas.edu/~dafr/Index/determinants.pdf}{revised pdf}) \item [[Jean-Michel Bismut]], [[Daniel Freed]], \emph{The analysis of elliptic families.I. Metrics and connections on determinant bundles}, Comm. Math. Phys. \textbf{106}, 1 (1986), 159-176, \href{http://projecteuclid.org/euclid.cmp/1104115586}{euclid}, \emph{II. Dirac operators, eta invariants, and the holonomy theorem}, Comm. Math. Phys. \textbf{107}, 1 (1986), 103-163. \href{http://projecteuclid.org/euclid.cmp/1104115934}{euclid} \item [[Jean-Michel Bismut]], \emph{Quillen metrics and determinant bundles}, 2 conference lectures in honour of A. N. Tyurin, video at \href{http://www.mathnet.ru/php/presentation.phtml?presentid=62&option_lang=eng}{link} \item A. Pressley, [[Graeme Segal|G. Segal]], \emph{Loop Groups}, Oxford Math. Monographs, 1986. \item Kenro Furutani, \emph{On the Quillen determinant}, J. Geom. Phys. \textbf{49}, 4, 366-375, \href{http://arxiv.org/abs/math/0309127}{math.DG/0309127}, \href{http://dx.doi.org/10.1016/j.geomphys.2003.07.001}{doi} \item [[M. Kontsevich]], S. Vishik, \emph{Geometry of determinants of elliptic operators}, in Functional Analysis on the Eve of the 21st Century. Vol. I (S. Gindikin, et al., eds.) In honor of the 80th birthday of [[Israel Gel'fand|I.M. Gelfand]]. Birkh\"a{}user, Progr. Math. \textbf{131} (1993), 173-197, \href{http://193.51.104.7/~maxim/TEXTS/geometry_determinants_12.pdf}{pdf}, \href{http://arxiv.org/abs/hep-th/9406140}{hep-th/9406140} \item [[Robbert Dijkgraaf]], [[Edward Witten|E. Witten]], \emph{Topological gauge theories and group cohomology}, Commun. Math.Phys. \textbf{129}, 393--429 (1990), \href{http://projecteuclid.org/euclid.cmp/1104180750}{euclid}, \href{http://www.ams.org/mathscinet-getitem?mr=1048699}{MR1048699} \end{itemize} Discussion in the context of the [[modular functor]] is in \begin{itemize}% \item [[Graeme Segal]], section 6 and section 5 of \emph{The definition of conformal field theory} , preprint, 1988; also in [[Ulrike Tillmann]] (ed.) \emph{Topology, geometry and quantum field theory} , London Math. Soc. Lect. Note Ser., Vol. 308. Cambridge University Press, Cambridge (2004) 421-577. (\href{https://people.maths.ox.ac.uk/segalg/0521540496txt.pdf}{pdf}) \end{itemize} [[!redirects determinant line bundles]] \end{document}