\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{dg-geometry} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_geometry}{}\paragraph*{{Higher geometry}}\label{higher_geometry} [[!include higher geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{the_toposes}{The $(\infty,1)$-toposes}\dotfill \pageref*{the_toposes} \linebreak \noindent\hyperlink{over_formal_duals_of_nonpositively_graded_cdgalgebras}{Over formal duals of non-positively graded cdg-algebras}\dotfill \pageref*{over_formal_duals_of_nonpositively_graded_cdgalgebras} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{over_formal_duals_of_general_cdgalgebras}{Over formal duals of general cdg-algebras}\dotfill \pageref*{over_formal_duals_of_general_cdgalgebras} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} This entry describes the [[higher geometry]]/[[derived geometry]] modeled on [[(∞,1)-site]]s of formal duals of [[dg-algebra]]s, bounded or unbounded, over a [[field]] of [[characteristic]] 0. The corresponding [[(∞,1)-topos]] is the context for classical [[rational homotopy theory]], which arises by forming [[function algebras on ∞-stacks]] over [[constant ∞-stack]]s. It is also the context in which classical and higher order [[Hochschild homology]] of algebras and dg-algebras arises naturally as the function $\infty$-algebra on [[free loop space object]]s. \hypertarget{the_toposes}{}\subsection*{{The $(\infty,1)$-toposes}}\label{the_toposes} We discuss some basic aspects of the [[(∞,1)-topos]]es over [[(∞,1)-site]]s of formal duals of cdg-algebras and of cdg-algebras of functions on its objects. \hypertarget{over_formal_duals_of_nonpositively_graded_cdgalgebras}{}\subsubsection*{{Over formal duals of non-positively graded cdg-algebras}}\label{over_formal_duals_of_nonpositively_graded_cdgalgebras} Let $k$ be a [[field]] of [[characteristic]] 0, or more generally a commutative $\mathbb{Q}$-[[associative algebra|algebra]]. \hypertarget{definition}{}\paragraph*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} Write \begin{itemize}% \item $cdgAlg_k$ for the category of graded-commutative cochain [[dg-algebra]]s (meaning: with [[differential]] of degree +1) in arbitrary degree; \item $cdgAlk_k^-$ for the full [[subcategory]] on objects with vanishing [[cochain cohomology]] in positive degree, $H^{\bullet \geq 1}(-) = 0$. \end{itemize} There are the standard projective [[model structures on dg-algebras]] on these categories, whose weak equivalences are the [[quasi-isomorphism]]s and whose fibrations are the degreewise surjections. \end{defn} This is considered in (\hyperlink{ToenVezzosiStacks}{To\"e{}n-Vezzosi, 2.3.1}) \begin{defn} \label{}\hypertarget{}{} Let \begin{displaymath} C \hookrightarrow ((cdgAlg_k^-)^{op})^\circ \end{displaymath} be a [[small (∞,1)-category|small]] full [[sub-(∞,1)-category]] of the [[(∞,1)-category]] [[presentable (∞,1)-category|presented]] by this model structure, and let $C$ be equipped with the structure of a [[subcanonical coverage|subcanonical]] [[(∞,1)-site]]. Write \begin{displaymath} \mathbf{H} := Sh_{(\infty,1)}(C) \end{displaymath} for the [[(∞,1)-category of (∞,1)-sheaves]] on $C$. We have a derived [[Isbell duality]] \begin{displaymath} (\mathcal{O} \dashv j) : (cdgAlg_k^{op})^\circ \stackrel{\overset{\mathcal{O}}{\leftarrow}}{\underset{j}{\to}} \mathbf{H} \end{displaymath} where the [[left adjoint|left]] [[adjoint (∞,1)-functor]] $\mathcal{O}$ is the [[Yoneda extension]] of the inclusion $cdgAlg^+_k \hookrightarrow cdgAlg_k$. \end{defn} This is considered in (\hyperlink{Ben-ZviNadler}{Ben-ZviNadler}). See [[function algebras on ∞-stacks]] for details. \hypertarget{properties}{}\paragraph*{{Properties}}\label{properties} \begin{uprop} The inclusion \begin{displaymath} cdgAlg^-_k \hookrightarrow cdgAlg_k \end{displaymath} is a \emph{homotopical context} in the sense of (\hyperlink{ToenVezzosiStacks}{To\"e{}nVezzosi, def. 1.1.0.11}). \end{uprop} This is (\hyperlink{ToenVezzosiStacks}{To\"e{}nVezzosi, lemma 2.3.11}). We record the following implications of this statement \begin{cor} \label{}\hypertarget{}{} $(cdgAlg_k, \otimes_k)$ is a [[symmetric monoidal category|symmetric]] [[monoidal model category]]. \end{cor} \begin{cor} \label{}\hypertarget{}{} For $B \in (dgcAlg_k)_{proj}$ a cofibrant object, the [[tensor product]] with $B$ preserves weak equivalences. \end{cor} This follows from (\hyperlink{ToenVezzosiStacks}{To\"e{}nVezzosi, assumption 1.1.0.4}). \begin{cor} \label{cdgAlgInclusionPreservesLimits}\hypertarget{cdgAlgInclusionPreservesLimits}{} The inclusion \begin{displaymath} (cdgAlg_k^-)^{op} \hookrightarrow (cdgAlg_k)^{op} \end{displaymath} preserves [[homotopy limit]]s, hence the induced inclusion \begin{displaymath} ((cdgAlg_k^-)^{op})^\circ \hookrightarrow ((cdgAlg_k)^{op})^\circ \end{displaymath} preserves [[(∞,1)-limit]]s. \end{cor} This follows from (\hyperlink{ToenVezzosiStacks}{To\"e{}nVezzosi, assumption 1.1.0.6}). \begin{defn} \label{}\hypertarget{}{} For $A \in cdgAlg_k$ a [[nLab:dg-algebra]], write \begin{itemize}% \item $A Mod$ for its [[nLab:model structure on dg-modules|category of dg-modules]]; This is naturally a [[nLab:symmetric monoidal category]]. \item $cdgAlg_A := CMon(A Mod)$ for the [[category of commutative monoids]] in $A Mod$, the category of \textbf{cdg-$A$-algebras}. \end{itemize} \end{defn} \begin{cor} \label{ModelStructureOndgAAlgebras}\hypertarget{ModelStructureOndgAAlgebras}{} For any $A\in cdgAlg_k$ say a morphism in $cdgAlg_A$ is \begin{itemize}% \item a weak equivalence precisely if it is a [[nLab:quasi-isomorphism]]; \item a fibration precisely if it is degreewise surjective. \end{itemize} This makes $cdgAlg_A$ into a [[model category]] that is \begin{itemize}% \item [[combinatorial model category|combinatorial]]; \item [[proper model category|proper]]. \end{itemize} There is an [[equivalence of categories]] with the [[under category]] of cdg-algebras under $A$ \begin{displaymath} cdgAlg_A \simeq A/cdgAlg_k \end{displaymath} which is a [[Quillen equivalence]] with respect to the standard [[model structure on an under category]] on the right. \end{cor} This is (\hyperlink{ToenVezzosiStacks}{To\"e{}nVezzosi, assumption 1.1.0.4, remark on p. 18}). \begin{cor} \label{}\hypertarget{}{} For $B \in cdgAlg_A$ cofibrant with respect to the model structure in cor \ref{ModelStructureOndgAAlgebras}, the [[tensor product]] ([[base change]]) functor \begin{displaymath} B \otimes_A (-) : A Mod \to B Mod \end{displaymath} preserves weak equivalences. \end{cor} This is (\hyperlink{ToenVezzosiStacks}{To\"e{}nVezzosi, assumption 1.1.0.4}). \begin{prop} \label{}\hypertarget{}{} The [[monoidal Dold-Kan correspondence]] provides a [[Quillen equivalence]] \begin{displaymath} (\Gamma^{cmon} \dashv N_\bullet) : cAlg_k^{\Delta^{op}} \stackrel{\overset{\Gamma^{cmon}}{\leftarrow}}{\underset{N_\bullet}{\to}} cdgAlg_k^+ \end{displaymath} (since $k$ is assumed to be of characteristic 0). Under this equivalence we have that $U \in cAlg_k \hookrightarrow cAlg_k^{\Delta^{op}} \hookrightarrow \mathbf{H}$ is $\mathcal{O}$-perfect: \begin{displaymath} \mathcal{O} (X^{K}) \simeq K \cdot \mathcal{O}(X) \end{displaymath} and this recovers the constructions discussed above in \hyperlink{HochschildChainComplex}{The Hochschild chain complex of an associative algebra}. \end{prop} \begin{proof} Since the [[(∞,1)-Yoneda embedding]] $y$ commutes with [[(∞,1)-limit]]s we have that the powering $(y(U))^{K} \simeq y(U^K)$ is still representable. Therefore \begin{displaymath} \mathcal{O} ((y(U))^K) \simeq \mathcal{O}(U^K) \;\; \in (cdgAlg_k^-)^{op} \hookrightarrow (cdgAlg_k)^{op} \end{displaymath} is simply the formal dual of $U^K$, which is $K \cdot \mathcal{O}(U)$ formed in $cdgAlg_k$ by formal duality. By the \href{cdgAlgInclusionPreservesLimits}{above proposition} the inclusion $cdgAlg_k^- \hookrightarrow cdgAlg_k$ preserves this $(\infty,1)$-colimit. \end{proof} \hypertarget{over_formal_duals_of_general_cdgalgebras}{}\subsubsection*{{Over formal duals of general cdg-algebras}}\label{over_formal_duals_of_general_cdgalgebras} (\ldots{}) \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \begin{itemize}% \item [[dg-manifold]], [[dg-scheme]] \item [[Hochschild cohomology]]: section ; \item [[rational homotopy theory]]: [[function algebras on ∞-stacks]] \item [[perfect ∞-stack]]s and their [[geometric ∞-function theory]] \item [[BRST-BV complex]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Various [[model category]] presentations of dg-geometry are presented in \begin{itemize}% \item [[Bertrand Toën]], [[Gabriele Vezzosi]], \emph{Homotopical Algebraic Geometry II: geometric stacks and applications} (\href{http://arxiv.org/abs/math/0404373}{arXiv}) \end{itemize} The [[geometric ∞-function theory]] of [[perfect ∞-stack]]s in dg-geometry, and the corresponding [[Hochschild cohomology]] is considered in \begin{itemize}% \item [[David Ben-Zvi|Ben-Zvi]], [[John Francis]], [[David Nadler]], \emph{Integral transforms and Drinfeld centers in derived algebraic geometry} (\href{http://arxiv.org/abs/0805.0157}{arXiv}) \end{itemize} The $(\mathcal{O} \dashv Spec)$-adjunction for dg-geometry is studied in \begin{itemize}% \item [[David Ben-Zvi]], [[David Nadler]], \emph{Loop Spaces and Connections} (\href{http://arxiv.org/abs/1002.3636}{arXiv:1002.3636}) \end{itemize} The basic reference for the [[model structure on dg-algebras]] (see there for more details) for the commutative case over a field of characteristic 0 is \begin{itemize}% \item [[Vladimir Hinich]], \emph{Homological algebra of homotopy algebras} Communications in algebra, 25(10). 3291-3323 (1997)(\href{http://arxiv.org/abs/q-alg/9702015}{arXiv:q-alg/9702015}, \emph{Erratum} (\href{http://arxiv.org/abs/math/0309453}{arXiv:math/0309453})) \end{itemize} Details on the use of this [[model category]] structure for modelling dg-spaces are in \begin{itemize}% \item [[Kai Behrend]], \emph{Differential graded schemes I: prefect resolving algebras} (\href{http://arxiv.org/abs/math/0212225}{arXiv:0212225}) \item [[Kai Behrend]], \emph{Differential Graded Schemes II: The 2-category of Differential Graded Schemes} (\href{http://arxiv.org/abs/math/0212226}{arXiv:0212226}) \end{itemize} \end{document}