\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{diagram} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{CategoryShapedDiagrams}{Diagrams shaped like categories}\dotfill \pageref*{CategoryShapedDiagrams} \linebreak \noindent\hyperlink{CategoryShapedDiagramFunctorially}{Functorial definition}\dotfill \pageref*{CategoryShapedDiagramFunctorially} \linebreak \noindent\hyperlink{CategoryShapedDiagramInComponents}{Component definition}\dotfill \pageref*{CategoryShapedDiagramInComponents} \linebreak \noindent\hyperlink{ShapeOfDirectedGraph}{Diagrams shaped like directed graphs}\dotfill \pageref*{ShapeOfDirectedGraph} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{commutative_diagrams}{Commutative diagrams}\dotfill \pageref*{commutative_diagrams} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Informally, a \textbf{diagram} in a [[category]] $C$ consists of some [[objects]] of $C$ connected by some [[morphisms]] of $C$. Frequently when doing category theory, we ``draw diagrams'' such as \begin{displaymath} \itexarray{A & \overset{f}{\to} & B\\ ^h\downarrow && \downarrow^k\\ C& \underset{g}{\to} & D} \end{displaymath} by drawing some objects (or dots labeled by objects) connected by arrows labeled by morphisms. This terminology is often used when speaking about [[limits]] and [[colimits]]; that is, we speak about ``the limit or colimit of a diagram.'' There are two natural ways to give the notion of ``diagram'' a formal definition. One is to say that a diagram is a [[functor]], usually one whose domain is a (very) [[small category]]. This level of generality is sometimes convenient. On the other hand, a more direct representation of what we draw on the page, when we ``draw a diagram,'' only involves labeling the vertices and edges of a [[directed graph]] (or [[quiver]]) by objects and morphisms of the category. This sort of diagram can be identified with a functor whose domain is a [[free category]], and this is the most common context when we talk about diagrams ``commuting.'' \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \hypertarget{CategoryShapedDiagrams}{}\subsubsection*{{Diagrams shaped like categories}}\label{CategoryShapedDiagrams} We discuss here diagrams of the ``shape of a small catgeory'', as well as the concept of [[cones]]/[[cocones]] over these and [[limit|limiting]]/[[colimit|colimiting]] (co-)cones. There is a quick abstract functorial definition \begin{itemize}% \item \emph{\hyperlink{CategoryShapedDiagramFunctorially}{functorial definition}} \end{itemize} and there is a more long-winded but more explicit definition in terms of components \begin{itemize}% \item \emph{\hyperlink{CategoryShapedDiagramInComponents}{component definition}}. \end{itemize} \hypertarget{CategoryShapedDiagramFunctorially}{}\paragraph*{{Functorial definition}}\label{CategoryShapedDiagramFunctorially} We state the concise functorial definition of diagrams of the shape of categories. \begin{defn} \label{AbstractDefinition}\hypertarget{AbstractDefinition}{} \textbf{(functorial definition)} Let $\mathcal{C}$ be a [[category]] and let $\mathcal{I}$ [[small category]], Then \begin{enumerate}% \item a \emph{diagram $X$ of shape $\mathcal{I}$ in $\mathcal{C}$} is a [[functor]] of the form \begin{displaymath} X \;\colon\; \mathcal{I} \longrightarrow \mathcal{C} \,, \end{displaymath} \item the \emph{category of $\mathcal{I}$-shaped diagrams in $\mathcal{C}$} is the [[functor category]] $Funct(\mathcal{I}, \mathcal{C})$; \item a diagram $X \colon \mathcal{I} \to \mathcal{C}$ is \emph{constant} if it is a [[constant functor]] \begin{displaymath} const_{\tilde X} \;\colon\; \mathcal{I} \overset{\exists!}{\longrightarrow} \ast \overset{\tilde X}{\longrightarrow} \mathcal{C} \end{displaymath} in which case it is given by the data of a single object $\tilde X$; \item a \emph{[[cone]]} $C$ over a diagram $X \colon \mathcal{I} \to \mathcal{C}$ with \emph{tip} an object $\tilde X \in \mathcal{C}$ is a [[natural transformation]] from the constant diagram $const_{\tilde X} \colon \mathcal{I} \to \ast \to \mathcal{C}$ to $X$: \begin{displaymath} C \;\colon\; const_{\tilde X} \Rightarrow X \end{displaymath} \item a \emph{[[cocone]]} $C$ under a diagram $X \colon \mathcal{I} \to \mathcal{C}$ is a [[natural transformation]] to a constant diagram $const_{\tilde X} \colon \mathcal{I} \to \ast \to \mathcal{C}$ from $X$: \begin{displaymath} C \;\colon\; X \Rightarrow const_{\tilde X} \end{displaymath} \item the \emph{limiting cone} (or \emph{[[limit]]}, for short) over a diagram $X$ is, if it exists, the [[terminal object]] in the [[category]] of [[cones]] over $X$, which means that it is a cone $C_{lim}$ with tip denoted $\underset{\longleftarrow}{\lim}_i X_i$ such that for every other cone $C$ with tip $\tilde X$ there is a unique [[natural transformation]] $\phi \colon const_{\tilde X} \Rightarrow const_{\underset{\longleftarrow}{\lim}_i X_i}$ such that \begin{displaymath} C = C_{lim} \circ \phi \end{displaymath} \item the \emph{colimiting cone} (or \emph{[[colimit]]}, for short) under a diagram $X$ is, if it exists, the [[initial object]] in the [[category]] of [[cocones]] under $X$, which means that it is a co-cone $C_{lim}$ with tip denoted $\underset{\longrightarrow}{\lim}_i X_i$ such that for every other cocone $C$ with tip $\tilde X$ there is a unique [[natural transformation]] $\phi \colon const_{\underset{\longrightarrow}{\lim}_i X_i} \Rightarrow const_{\tilde X}$ such that \begin{displaymath} C = \phi \circ C_{lim} \,. \end{displaymath} \end{enumerate} \end{defn} \hypertarget{CategoryShapedDiagramInComponents}{}\paragraph*{{Component definition}}\label{CategoryShapedDiagramInComponents} We state an explicit component-based definition of diagrams of the shape of categories. \begin{defn} \label{Diagram}\hypertarget{Diagram}{} \textbf{([[diagram]] in a [[category]])} A [[diagram]] $X_\bullet$ in a [[category]] is \begin{enumerate}% \item a [[set]] $\{ X_i \}_{i \in I}$ of [[objects]] in the category; \item for every [[pair]] $(i,j) \in I \times I$ of labels of objects a [[set]] $\{ X_i \overset{ f_\alpha }{\longrightarrow} X_j\}_{\alpha \in I_{i,j}}$ of [[morphisms]] between these objects; \item for every label $i \in I$ a choice of element $\epsilon_i \in I_{i,i}$; \item for each [[triple]] $i,j,k \in I$ a [[function]] \begin{displaymath} comp_{i,j,k} \;\colon\; I_{i,j} \times I_{j,k} \longrightarrow I_{i,k} \end{displaymath} \end{enumerate} such that \begin{enumerate}% \item the pairing $comp$ is [[associativity|associative]] and [[unital]] with the $f_{\epsilon_i}$-s the [[neutral elements]]; \item for every $i \in I$ then $f_{\epsilon_i} = id_{X_i}$ is the [[identity morphism]] on the $i$-th obect; \item for every composable pair of morphisms \end{enumerate} \begin{displaymath} X_i \overset{f_{\alpha} }{\longrightarrow} X_j \overset{ f_{\beta} }{\longrightarrow} X_k \end{displaymath} then the [[composition|composite]] of these two morphisms equals the morphism of the diagram that is labeled by the value of $comp_{i,j,k}$ on their labels: \begin{displaymath} f_{\beta} \circ f_\alpha \,=\, f_{comp_{i,j,k}( \alpha, \beta )} \,. \end{displaymath} The last condition we depict as follows: \begin{displaymath} \itexarray{ && X_j \\ & {}^{\mathllap{f_{\alpha}}}\nearrow && \searrow^{\mathrlap{f_{\beta}}} \\ X_i && \underset{ comp_{i,j,k}(\alpha,\beta) }{\longrightarrow} && X_k } \,. \end{displaymath} \end{defn} \begin{defn} \label{Cone}\hypertarget{Cone}{} \textbf{([[cone]] over a [[diagram]])} Consider a [[diagram]] \begin{displaymath} X_\bullet \,=\, \left( \left\{ X_i \overset{f_\alpha}{\longrightarrow} X_j \right\}_{i,j \in I, \alpha \in I_{i,j}} \,,\, \mathrm{comp} \right) \end{displaymath} in some [[category]] (def. \ref{Diagram}). Then \begin{enumerate}% \item a \emph{[[cone]]} over this diagram is \begin{enumerate}% \item an [[object]] $\tilde X$ in the category; \item for each $i \in I$ a morphism $\tilde X \overset{p_i}{\longrightarrow} X_i$ in the category \end{enumerate} such that \begin{itemize}% \item for all $(i,j) \in I \times I$ and all $\alpha \in I_{i,j}$ then the condition \begin{displaymath} f_{\alpha} \circ p_i = p_j \end{displaymath} holds, which we depict as follows: \begin{displaymath} \itexarray{ && \tilde X \\ & {}^{\mathllap{p_i}}\swarrow && \searrow^{\mathrlap{p'_j}} \\ X_i && \underset{f_\alpha}{\longrightarrow} && X_j } \end{displaymath} \end{itemize} \item a \emph{[[co-cone]]} over this diagram is \begin{enumerate}% \item an [[object]] $\tilde X$ in the category; \item for each $i \in I$ a morphism $q_i \colon X_i \longrightarrow \tilde X$ in the category \end{enumerate} such that \begin{itemize}% \item for all $(i,j) \in I \times I$ and all $\alpha \in I_{i,j}$ then the condition \begin{displaymath} q_j \circ f_{\alpha} = q_i \end{displaymath} holds, which we depict as follows: \begin{displaymath} \itexarray{ X_i && \overset{f_\alpha}{\longrightarrow} && X_j \\ & {}_{\mathllap{q_i}}\searrow && \swarrow_{\mathrlap{q_j}} \\ && \tilde X } \,. \end{displaymath} \end{itemize} \end{enumerate} \end{defn} \begin{defn} \label{LimitingCone}\hypertarget{LimitingCone}{} Consider a [[diagram]] \begin{displaymath} X_\bullet \,=\, \left( \left\{ X_i \overset{f_\alpha}{\longrightarrow} X_j \right\}_{i,j \in I, \alpha \in I_{i,j}} \,,\, \mathrm{comp} \right) \end{displaymath} in some [[category]] (def. \ref{Diagram}). Then \begin{enumerate}% \item its \emph{[[limit|limiting cone]]} (or just \emph{[[limit]]} for short) is, if it exists, [[generalized the|the]] [[cone]] \begin{displaymath} \left\{ \itexarray{ && \underset{\longleftarrow}{\lim}_i X_i \\ & {}^{\mathllap{p_i}}\swarrow && \searrow^{\mathrlap{p_j}} \\ X_i && \underset{f_\alpha}{\longrightarrow} && X_j } \right\} \end{displaymath} over this diagram (def. \ref{Cone}) which is \emph{universal} or \emph{initial} among all possible cones, in that it has the property that for \begin{displaymath} \left\{ \itexarray{ && \tilde X \\ & {}^{\mathllap{p'_i}}\swarrow && \searrow^{\mathrlap{p'_j}} \\ X_i && \underset{f_\alpha}{\longrightarrow} && X_j } \right\} \end{displaymath} any other [[cone]], then there is a unique morphism \begin{displaymath} \phi \;\colon\; \tilde X \overset{}{\longrightarrow} \underset{\longrightarrow}{\lim}_i X_i \end{displaymath} that factors the given cone through the limiting cone, in that for all $i \in I$ then \begin{displaymath} p'_i = p_i \circ \phi \end{displaymath} which we depict as follows: \begin{displaymath} \itexarray{ \tilde X \\ {}^{\mathllap{\phi}}\downarrow & \searrow^{\mathrlap{p_i}} \\ \underset{\longrightarrow}{\lim}_i X_i &\underset{p_i}{\longrightarrow}& X_i } \end{displaymath} \item its \emph{[[colimit|colimiting cocone]]} (or just \emph{[[colimit]]} for short) is, if it exists, [[generalized the|the]] [[cocone]] \begin{displaymath} \left\{ \itexarray{ X_i && \underset{f_\alpha}{\longrightarrow} && X_j \\ & {}^{\mathllap{q_i}}\searrow && \swarrow^{\mathrlap{q_j}} \\ \\ && \underset{\longrightarrow}{\lim}_i X_i } \right\} \end{displaymath} under this diagram (def. \ref{Cone}) which is \emph{universal} or \emph{terminal} among all possible co-cones, in that it has the property that for \begin{displaymath} \left\{ \itexarray{ X_i && \underset{f_\alpha}{\longrightarrow} && X_j \\ & {}^{\mathllap{q'_i}}\searrow && \swarrow_{\mathrlap{q'_j}} \\ && \tilde X } \right\} \end{displaymath} any other [[cocone]], then there is a unique morphism \begin{displaymath} \phi \;\colon\; \underset{\longrightarrow}{\lim}_i X_i \overset{}{\longrightarrow} \tilde X \end{displaymath} that factors the given co-cone through the co-limiting cocone, in that for all $i \in I$ then \begin{displaymath} q'_i = \phi \circ q_i \end{displaymath} which we depict as follows: \begin{displaymath} \itexarray{ X_i &\overset{q_i}{\longrightarrow}& \underset{\longrightarrow}{\lim}_i X_i \\ {}^{\mathllap{\phi}}\downarrow & \swarrow^{\mathrlap{q'_i}} \\ \tilde X } \end{displaymath} \end{enumerate} \end{defn} \hypertarget{ShapeOfDirectedGraph}{}\subsubsection*{{Diagrams shaped like directed graphs}}\label{ShapeOfDirectedGraph} \begin{defn} \label{}\hypertarget{}{} \textbf{([[free diagram]])} If $J$ is a [[directed graph]] with [[free category]] $F(J)$, then a \textbf{diagram} in $C$ of shape $J$ is a functor $D\colon F(J) \to C$, or equivalently a graph morphism $\bar{D}\colon J \to U(C)$. \end{defn} Here $F\colon Quiv \to Cat$ denotes the [[free category]] on a quiver and $U\colon Cat \to Quiv$ the underlying quiver of a category, which form a pair of [[adjoint functors]]. These are the sorts of diagrams which we ``draw on a page'' --- we draw a quiver, and then label its vertices with objects of $C$ and its edges with morphisms in $C$, thereby forming a graph morphism $J\to U(C)$. \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} \begin{itemize}% \item For either sort of diagram, $J$ may be called the \textbf{shape}, \textbf{scheme}, or \textbf{index} category or graph. \item Note that given a diagram $D:J\to C$, the image of the shape $J$ is not necessarily a [[subcategory]] of $C$, even if $J$ is itself taken to be a category. This is because the functor $D$ could identify objects of $J$, thereby producing new potential composites which do not exist in $J$. (Sometimes one talks about the ``image'' of a functor as a subcategory, but this really means the subcategory \emph{generated} by the image in the literal objects-and-morphisms sense.) \item $C$ must be a [[strict category]] to make sense of $U(C)$; however, $F(J)$ always makes sense. \end{itemize} \hypertarget{commutative_diagrams}{}\subsection*{{Commutative diagrams}}\label{commutative_diagrams} If $J$ is a category, then a diagram $J\to C$ is \textbf{[[commutative diagram|commutative]]} if it factors through a [[thin category]]. Equivalently, a diagram of shape $J$ commutes iff any two morphisms in $C$ that are assigned to any pair of [[parallel morphisms]] in $J$ (i.e., with same source and target in $J$) are equal. If $J$ is a quiver, as is more common when we speak about ``commutative'' diagrams, then a diagram of shape $J$ commutes if the functor $F(J) \to C$ factors through a thin category. Equivalently, this means that given any two parallel \emph{paths} of arbitrary finite length (including zero) in $J$, their images in $C$ have equal composites. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The shape of the \textbf{empty diagram} is the [[initial object|initial category]] with no object and no morphism. Every category $C$ admits a unique diagram whose shape is the empty ([[initial object|initial]]) category, which is called the \textbf{empty diagram} in $C$. \item The shape of the \textbf{terminal diagram} is the [[terminal category]] $J = \{*\}$ consisting of a single object and a single morphism (the identity morphism on that object). Specifying a diagram in $C$ whose shape is $\{*\}$ is the same as specifying a single [[object]] of $C$, the image of the unique object of $1$. (See [[global element]]) \item A diagram of the shape $\{a \to b\}$ in $C$ is the choice of any one [[morphism]] $D_{a b} : X_a \to X_b$ in $C$. Notice that strictly speaking this counts as a \emph{commuting diagram} , but is a degenerate case of a commuting diagram, since there is only a single morphism involved, which is necessarily equal to itself. \item If $J$ is the quiver with one object $a$ and one endo-edge $a\to a$, then a diagram of shape $J$ in $C$ consists of a single [[endomorphism]] in $C$. Since $a\to a$ and the zero-length path are parallel in $J$, such a diagram only commutes if the endomorphism is an identity. Note, in particular, that a single endomorphism can be considered as a diagram with more than one shape (this one and the previous one), and that whether this diagram ``commutes'' depends on the chosen shape. \item A diagram of shape the [[poset]] indicated by \begin{displaymath} \left\{ \itexarray{ a &\to& b \\ \downarrow && \downarrow \\ b' &\to& c } \right\} \end{displaymath} is a \textbf{commuting square} in $C$: this is a choice of four (not necessarily distinct!) objects $X_a, X_b, X_{b'}, X_c$ in C, together with a choice of (not necessarily distinct) four morphisms $D_{a b} : X_a \to X_b$, $D_{b c} : X_b \to X_c$ and $D_{a b'} : X_a \to X_{b'}$, $D_{b' c} : X_{b'} \to X_c$ in $C$, such that the composite morphism $D_{b c}\circ D_{a b}$ equals the composite $D_{b' c}\circ D_{a b'}$. One typically ``draws the diagram'' as \begin{displaymath} \itexarray{ X_a &\stackrel{D_{a b}}{\to}& X_b \\ {}^{\mathllap{D_{a b'}}}\downarrow && \downarrow^{\mathrlap{D_{b c}}} \\ X_{b'} &\stackrel{D_{b' c}}{\to}& X_{c} } \end{displaymath} in $C$ and says that \emph{the diagram commutes} if the above equality of composite morphisms holds. Notice that the original poset had, necessarily, a morphism $a \to c$ and could have equivalently been depicted as \begin{displaymath} \left\{ \itexarray{ a &\to& b \\ \downarrow &\searrow& \downarrow \\ b' &\to& c } \right\} \end{displaymath} in which case we could more explicitly draw its image in $C$ as \begin{displaymath} \itexarray{ X_a &\stackrel{D_{a b}}{\to}& X_b \\ {}^{\mathllap{D_{a b'}}}\downarrow &\searrow^{\stackrel{D_{b c}\circ D_{a b}}{= D_{b' c}\circ D_{a b'}}}& \downarrow^{\mathrlap{D_{b c}}} \\ X_{b'} &\stackrel{D_{b' c}}{\to}& X_{c} } \end{displaymath} \item By contrast, a diagram whose shape is the \emph{quiver} \begin{displaymath} \left\{ \itexarray{ a &\to& b \\ \downarrow && \downarrow \\ b' &\to& c } \right\} \end{displaymath} is a not-necessarily-commuting square. The free category on this quiver differs from the poset in the previous example by having \emph{two} morphisms $a\to c$, one given by the composite $a\to b\to c$ and the other by the composite $a \to b'\to c$. But the poset in the previous category is the poset reflection of this $F(J)$, so a diagram of this shape commutes, in the sense defined above, iff it is a commuting square in the usual sense. \item A pair of objects is a diagram whose shape is a [[discrete category]] with two objects. \item A pair of [[parallel morphisms]] is a diagram whose shape is a category $J = \{a \stackrel{\to}{\to} b\}$ with two objects and two morphisms from one to the other. Notice that if we required $\{a \stackrel{\to}{\to} b\}$ to be a [[poset]] this would necessarily make these two morphisms equal, and hence reduce this example to the one where $J = \{a \to b\}$. In other words, a diagram of this shape only \emph{commutes} if the two morphisms are equal. \item A [[span]] is a diagram whose shape is a category with just three objects and single morphisms from one of the objects to the other two; \begin{displaymath} J = \left\{ \itexarray{ && a \\ & \swarrow && \searrow \\ b &&&& c } \right\} \end{displaymath} dually, a [[cospan]] is a diagram whose shape is [[opposite category|opposite]] to the shape of a span. \begin{displaymath} J = \left\{ \itexarray{ b &&&& c \\ & \searrow && \swarrow \\ && a } \right\} \end{displaymath} \item A [[transfinite composition]] diagram is one of the shape the [[poset]] indicated by \begin{displaymath} J = \left\{ \itexarray{ a_0 &\to& a_1 &\to& \cdots \\ & \searrow & \downarrow & \swarrow & \cdots \\ && b } \right\} \,, \end{displaymath} where the indices may range over the [[natural number]]s or even some more general [[ordinal number]]. This is a non-finite commuting diagram. \item [[tower diagram]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[commuting diagram]] \item [[internal diagram]] \item [[free diagram]] \end{itemize} [[!redirects diagram]] [[!redirects diagrams]] [[!redirects small diagram]] [[!redirects small diagrams]] \end{document}