\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{diagram of a first-order structure} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_theory}{}\paragraph*{{Model theory}}\label{model_theory} [[!include model theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Given a [[first-order structure|model]] $M$ of a (not necessarily complete) [[first-order theory]] $T$, one can canonically associate theories $T_{\mathsf{Diag}(M)}$ and $T_{\mathsf{EDiag}(M)}$ whose models are precisely the models $N \models T$ into which $M$ embeds as a substructure and [[elementary embedding|elementary substructure]], respectively. In the case of the latter, this gives a theory whose category of models is precisely the [[co-slice category]] $M/\mathbf{Mod}(T)$ of models under $M$ in $\mathbf{Mod}(T)$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $M$ be a [[first-order structure]] in the language $\mathcal{L}$. We obtain an expanded language $\mathcal{L}(M)$ by adding to $\mathcal{L}$ new constant symbols $c_m$ for each $m \in M$, and $M$ is naturally an $\mathcal{L}(M)$-structure by interpreting each new constant as its namesake. The \textbf{elementary diagram} of $M$, written $\mathsf{EDiag}(M)$, is the set of all $\mathcal{L}$-sentences possibly using constants $c_m$ which are true in $M$, i.e. the $\mathcal{L}(M)$-theory of $M$. The \textbf{quantifier-free diagram} of $M$, written $\mathsf{Diag}(M)$, is obtained the same way as $\mathsf{EDiag}(M)$, but only allowing quantifier-free $\mathcal{L}(M)$-sentences. If $N$ models $\mathsf{EDiag}(M)$, then $N$ contains $M$ as an elementary substructure. If $N$ models $\mathsf{Diag}(M)$, then $N$ contains $M$ as an induced substructure. If we are given $M$ and $T$ as above, we simply obtain $T_{\mathsf{Diag}(M)}$ and $T_{\mathsf{EDiag}(M)}$ as the union of $T$ (viewed as an $\mathcal{L}(M)$-theory) with $\mathsf{Diag}(M)$ and $\mathsf{EDiag}(M)$, respectively. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item A trivial example is [[ACF]]$_0$, the theory of [[algebraically closed field|algebraically closed fields]] of characteristic zero (in the language of rings). Since $\mathbb{Q}$ is the prime field of characteristic zero, any algebraically closed field models $\mathsf{Diag}(\mathbb{Q})$, and in fact since each element of $\mathbb{Q}$ is already definable in [[ACF]]$_0$, $\mathsf{Diag}(\mathbb{Q})$ is just the quantifier-free part of [[ACF]]$_0$. \item Let $R$ be the [[countable random graph]]. Since it is an [[omega-categorical structure]], any countable model of $\mathsf{EDiag}(R)$ will again be isomorphic to $R$. This is not true if we replace $\mathsf{EDiag}(R)$ with $\mathsf{Diag}(R)$, since there are all sorts of ways to extend $R$ while ensuring it no longer satisfies the almost-sure theory of finite graphs. (For example, we could add a new vertex and connect it to all the vertices from $R$.) \end{itemize} \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} \begin{itemize}% \item For $T' = T_{\mathsf{Diag}(M)}$ or $T_{\mathsf{EDiag}(M)}$ there is an obvious interpretation $T \to T'$ which induces for every $N \models T'$ a map of automorphism groups $\operatorname{Aut}_{\mathcal{L}(M)}(N) \to \operatorname{Aut}_{\mathcal{L}}(N)$, corresponding to the inclusion \end{itemize} \begin{displaymath} \operatorname{Aut}_{\mathcal{L}}(N/M) \hookrightarrow \operatorname{Aut}_{\mathcal{L}}(N) \end{displaymath} of the pointwise [[stabilizer]] of $M$ in $N$ into the full automorphism group of $N$. \begin{itemize}% \item To add a distinct constant symbol to a theory is to adjoin a new [[global point]] to its [[syntactic category]]. This doesn't do very much unless if you additionally specify its [[type (in model theory)|type]], i.e. the [[ultrafilter]] of subobjects above it. When we pass to the quantifier-free diagram of a model, we specify constants named after the model up to quantifier-free types, and when we pass to the elementary diagram of a model, we specify constants named after the model up to complete types. \item A [[first-order theory]] T [[quantifier elimination|eliminates quantifiers]] if and only if it is ``substructure-complete'': given any model $M$ of $T$ and any \emph{substructure} $N \subseteq M$, $T_{\mathsf{Diag}(N)}$ is complete. \end{itemize} \begin{remark} \label{}\hypertarget{}{} The process of passing from $T$ to $T_{\mathsf{Diag}(M)}$ (resp. $\mathsf{EDiag}$) is [[functorial]] in the way you would expect the process of passing from a category of models to a co-slice category of models to be on corepresenting objects. That is (now [[elimination of imaginaries|eliminating imaginaries]] and working with the [[pretopos completion|pretopos completions]] of [[syntactic category|syntactic categories]]): if $T'$ is an $\mathcal{L}'$-theory and $M$ is an $\mathcal{L}'$-structure, and $T$ is an $\mathcal{L}$-theory over $T'$ via an interpretation $T \overset{F}{\to} T'$, then there are naturally-induced interpretations \begin{displaymath} T'_{\mathsf{Diag}(F^*M)} \to T_{\mathsf{Diag}(M)} \end{displaymath} and \begin{displaymath} T'_{\mathsf{EDiag}(F^*M)} \to T_{\mathsf{EDiag}(M)}. \end{displaymath} \end{remark} \begin{proof} The [[interpretation]] $F$ induces a ``taking reducts'' functor \begin{displaymath} F^* \overset{\operatorname{df}}{=} \mathbf{Mod}(F) = \mathbf{Pretop}(F, \mathbf{Set}) : \mathbf{Mod}(T) \to \mathbf{Mod}(T'). \end{displaymath} We restrict $F^*$ to the full subcategory consisting of those models of $T$ embedding (resp. elementarily embedding) the structure $M$. These are [[elementary class|elementary classes]], and so those full subcategories are sub-[[ultracategory|ultracategories]] of $\mathbf{Mod}(T)$. The restrictions of $F^*$ are ultrafunctors \begin{displaymath} \underline{\mathbf{Mod}}(T_{\mathsf{Diag}(M)}) \to \underline{\mathbf{Mod}}(T'_{\mathsf{Diag}(F^*M)}) \end{displaymath} and \begin{displaymath} \underline{\mathbf{Mod}}(T_{\mathsf{EDiag}(M)}) \to \underline{\mathbf{Mod}}(T'_{\mathsf{EDiag}(F^*M)}) \end{displaymath} because $F^*$ already was, and so by Makkai's [[strong conceptual completeness]], must be reflected by the desired interpretations. (That the latter functor is well-defined just follows from the fact that specifying an object $c \in \mathbf{C}$ and a functor $G : \mathbf{C} \to \mathbf{D}$ naturally induces a functor on the [[co-slice category|co-slice categories]] $c/\mathbf{C} \to G(c)/\mathbf{D}$. That the former functor is well-defined is less automatic but still trivial to check.) \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[first-order structure]] \item [[first-order theory]] \item [[quantifier elimination]] \item For the [[property]] of a theory $T$ that $T_{\mathsf{Diag}(A)}$ is complete for all substructures $A$, see [[substructure completeness]]. \item For the [[property]] of a theory $T$ that $T_{\mathsf{EDiag}(M)}$ is complete for all models $M$, see [[model completeness]]. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Dave Marker, (2002), \emph{Model theory: an introduction}, section 2.3 \end{itemize} [[!redirects elementary diagram]] [[!redirects quantifier-free diagram]] [[!redirects diagram (in model theory)]] \end{document}