\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{diffeological space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{cohesive_toposes}{}\paragraph*{{Cohesive toposes}}\label{cohesive_toposes} [[!include cohesive infinity-toposes - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{EmbeddingOfSmoothManifoldsIntoDiffeoloticalSpaces}{Embedding of smooth manifolds into diffeological spaces}\dotfill \pageref*{EmbeddingOfSmoothManifoldsIntoDiffeoloticalSpaces} \linebreak \noindent\hyperlink{embedding_of_smooth_manifolds_with_boundary_into_diffeological_spaces}{Embedding of smooth manifolds with boundary into diffeological spaces}\dotfill \pageref*{embedding_of_smooth_manifolds_with_boundary_into_diffeological_spaces} \linebreak \noindent\hyperlink{EmbeddingOfBanachManifoldsIntoDiffeologicalSpaces}{Embedding of Banach manifolds into diffeological spaces}\dotfill \pageref*{EmbeddingOfBanachManifoldsIntoDiffeologicalSpaces} \linebreak \noindent\hyperlink{RelationBetweenDeffeologicalAndFrechetStructure}{Embedding of Fr\'e{}chet manifolds into diffeological spaces}\dotfill \pageref*{RelationBetweenDeffeologicalAndFrechetStructure} \linebreak \noindent\hyperlink{EmbeddingOfDiffeologicalSpacesIntoTheSheafTopos}{Embedding of diffeological spaces into smooth sets}\dotfill \pageref*{EmbeddingOfDiffeologicalSpacesIntoTheSheafTopos} \linebreak \noindent\hyperlink{EmbeddingOfDiffeologicalSpacesIntoHigherDifferentialGeometry}{Embedding of diffeological spaces into higher differential geometry}\dotfill \pageref*{EmbeddingOfDiffeologicalSpacesIntoHigherDifferentialGeometry} \linebreak \noindent\hyperlink{distribution_theory}{Distribution theory}\dotfill \pageref*{distribution_theory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{full_subcategories}{Full subcategories}\dotfill \pageref*{full_subcategories} \linebreak \noindent\hyperlink{ReferencesForOrbifolds}{For orbifolds}\dotfill \pageref*{ReferencesForOrbifolds} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{diffeological space} is a type of [[generalized smooth space]]. As with the other variants, it subsumes the notion of [[smooth manifold]] but also naturally captures other spaces that one would like to think of as smooth spaces but aren't manifolds; for example, the space of all smooth maps between two smooth manifolds can be made into a diffeological space. (These mapping spaces are rarely manifolds themselves, see [[manifolds of mapping spaces]].) In a little more detail, a \textbf{diffeology}, $\mathcal{D}$ on a set $X$ is a [[presheaf]] on the category of open subsets of Euclidean spaces with smooth maps as morphisms. To each open set $U \subseteq \mathbb{R}^n$, it assigns a subset of $\Set(U,X)$. The functions in $\Set(U,X)$ are to be regarded as the ``smooth functions'' from $U$ to $X$. A \textbf{diffeological space} is then a set together with a diffeology on it. Diffeological spaces were originally introduced in (\hyperlink{Souriau79}{Souriau 79}). They have subsequently been developed in the textbook (\hyperlink{PIZ}{Iglesias-Zemmour 13}) \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{DiffSp}\hypertarget{DiffSp}{} Let $\mathcal{Op}$ denote the [[site]] whose objects are the open subsets of the Euclidean spaces $\mathbb{R}^n$ and whose morphisms are [[smooth map]]s between these. A \textbf{diffeological space} is a pair $(X,\mathcal{D})$ where \begin{itemize}% \item $X$ is a set \item and $\mathcal{D} \in Sh(\mathcal{Op})$ is a \textbf{[[diffeology]]} on $X$: \begin{itemize}% \item a [[subobject|subsheaf]] of the sheaf $U \mapsto Hom_{Set}(U,X)$ with $\mathcal{D}(*) = X$ \item equivalently: a [[concrete sheaf]] on the [[site]] $\mathcal{Op}$ such that $\mathcal{D}(*) = X$ - a [[concrete object|concrete]] [[smooth space]] (see there for more details). \end{itemize} \end{itemize} A [[morphism]] of diffeological spaces is a morphism of the corresponding [[sheaves]]: we take $DiffeologicalSp \hookrightarrow Sh(CartSp)$ to be the full [[subcategory]] on the diffeological spaces in the sheaf topos. \end{defn} For $(X,\mathcal{D})$ a diffeological space, and for any $U \in \mathcal{Op}$, the set $\mathcal{D}(U)$ is also called the set of \textbf{plots} in $X$ on $U$. This is to be thought of as the set of ways of mapping $U$ smoothly into the would-be space $X$. This assignment \emph{defined} what it means for a map $U \to X$ of sets to be smooth. For some comments on the reasoning behind this kind of definition of generalized [[space]]s see [[motivation for sheaves, cohomology and higher stacks]]. A sheaf on the site $\mathcal{Op}$ of open subsets of Euclidean spaces is completely specified by its restriction to [[CartSp]], the full subcategory of [[Cartesian space]]: The [[fully faithful functor]] $CartSp \hookrightarrow \mathcal{Op}$ is a [[dense subsite]]-inclusion. Therefore in the sequel we shall often restrict our attention to [[CartSp]]. One may define a \emph{[[smooth sets]]} to be \emph{any} sheaf of [[CartSp]]. A diffeological space is equivalently a [[concrete sheaf]] on the [[concrete site]] [[CartSp]]. (For details see \href{geometry+of+physics+--+smooth+sets#DiffeologicalSpacesAreTheConcreteSmoothSets}{this Prop.} at \emph{[[geometry of physics -- smooth sets]]}.) The [[full subcategory]] \begin{displaymath} DiffeologicalSpace \hookrightarrow Sh(CartSp) \end{displaymath} on all concrete sheaves is not a [[topos]], but is a [[quasitopos]]. This is Prop. \ref{DiffeologicalSpacesAreTheConcreteSmoothSets} below. The concreteness condition on the sheaf is a reiteration of the fact that a diffeological space is a subsheaf of the sheaf $U \mapsto X^{|U|}$. In this way, one does not have to explicitly mention the underlying set $X$ as it is determined by the sheaf on the one-point open subset of $\mathbb{R}^0$. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item Every [[smooth manifold]] $X$, i.e. every object of [[Diff]], becomes a diffeological space by defining the plots on $U \in CartSp$ to be the ordinary [[smooth function]]s from $U$ to $X$, i.e. the morphisms in [[Diff]]: \begin{displaymath} X : U \mapsto Hom_{Diff}(U,X) \,. \end{displaymath} \item For $X$ and $Y$ two diffeological spaces, their [[product]] as sets $X \times Y$ becomes a diffeological space whose plots are pairs consisting of a plot into $X$ and one into $Y$ \begin{displaymath} X \times Y : U \mapsto Hom_{DiffSp}(U,X) \times Hom_{DiffSp}(U,Y) \,. \end{displaymath} \item Given any two diffeological spaces $X$ and $Y$, the set of morphisms $Hom_{DiffSp}(X,Y)$ becomes a smooth space by taking the plots on some $U$ to be the smooth morphisms $X \times U \to Y$, i.e. the smooth $U$-parameterized families of smooth maps from $X$ to $Y$: \begin{displaymath} [X,Y] : U \mapsto Hom_{DiffSp}(X \times U, Y) \,. \end{displaymath} In this formula we regard $U \in CartSp \hookrightarrow Diff$ as a diffeological space according to the above example. In fact, we apply secretly here the [[Yoneda embedding]] and use the general formula for the cartesian [[closed monoidal structure on presheaves]]. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{EmbeddingOfSmoothManifoldsIntoDiffeoloticalSpaces}{}\subsubsection*{{Embedding of smooth manifolds into diffeological spaces}}\label{EmbeddingOfSmoothManifoldsIntoDiffeoloticalSpaces} \begin{prop} \label{}\hypertarget{}{} The obvious functor from the category [[Diff]] of [[smooth manifold]]s to the category of diffeological spaces is a [[full and faithful functor]] \begin{displaymath} Diff \to DiffeologicalSpace \,. \end{displaymath} \end{prop} \begin{proof} This is a direct consequence of the fact that [[CartSp]]$_{smooth}$ is a [[dense sub-site]] of [[Diff]] and the [[Yoneda lemma]]. It may nevertheless be useful to spell out a pedestrian proof. To see that the functor is faithful, notice that if $f,g : X \to Y$ are two [[smooth function]]s that differ at some point, then they must differ in some [[open neighbourhood]] of that point. This [[open ball]] is a plot, hence the corresponding diffeological spaces differ on that plot. To see that the functor is full, we need to show that a map of sets $f : X \to Y$ that sends plots to plots is necessarily a [[smooth function]], hence that all its [[derivative]]s exist. This can be tested already on all smooth curves $\gamma : (0,1) \to X$ in $X$. By [[Boman's theorem]], a function that takes all smooth curves to smooth curves is necessarily a smooth function. But curves are in particular plots, so a function that takes all plots of $X$ to plots of $Y$ must be smooth. \end{proof} \begin{remark} \label{}\hypertarget{}{} The proof shows that we could restrict attention to the full sub-site $CartSp_{dim \leq 1} \subset CartSp$ on the objects $\mathbb{R}^0$ and $\mathbb{R}^1$ and still have a full and faithful embedding \begin{displaymath} Diff \hookrightarrow Sh(CartSp_{dim \leq 1}) \,. \end{displaymath} This fact plays a role in the definition of [[Frölicher space]]s, which are [[generalized smooth space]]s defined by plots by curves into and out of them. While the site $CartSp_{dim \leq 1}$ is more convenient for some purposes, it is not so useful for other purposes, mostly when diffeological spaces are regarded from the point of view of the full sheaf topos: the sheaf topos $Sh(CartSp_{dim \leq 1})$ lacks some non-[[concrete sheaf|concrete]] sheaves of interest, such as the sheaves of differential forms of degree $\geq 2$. \end{remark} \hypertarget{embedding_of_smooth_manifolds_with_boundary_into_diffeological_spaces}{}\subsubsection*{{Embedding of smooth manifolds with boundary into diffeological spaces}}\label{embedding_of_smooth_manifolds_with_boundary_into_diffeological_spaces} \begin{prop} \label{SmoothManifoldsWithBoundaryEmbedIntoDiffeologicalSpaces}\hypertarget{SmoothManifoldsWithBoundaryEmbedIntoDiffeologicalSpaces}{} \textbf{([[manifolds with boundaries and corners]] form [[full subcategory]] of [[diffeological spaces]])} The evident [[functor]] \begin{displaymath} SmthMfdWBdrCrn \overset{\phantom{AAAA}}{\hookrightarrow} DiffeologicalSpaces \end{displaymath} from the [[category]] of [[smooth manifold|smooth]] [[manifolds with boundaries and corners]] to that of [[diffeological spaces]] is [[fully faithful functor|fully faithful]], hence is a [[full subcategory]]-embedding. \end{prop} (\hyperlink{PIZ}{Igresias-Zemmour 13, 4.16}, \hyperlink{GurerIZ19}{Gürer \& Iglesias-Zemmour 19}) \hypertarget{EmbeddingOfBanachManifoldsIntoDiffeologicalSpaces}{}\subsubsection*{{Embedding of Banach manifolds into diffeological spaces}}\label{EmbeddingOfBanachManifoldsIntoDiffeologicalSpaces} Also [[Banach manifolds]] embed [[full and faithful functor|fully faithfully]] into the category of diffeological spaces. In (\hyperlink{Hain}{Hain}) this is discussed in terms of Chen smooth spaces. \hypertarget{RelationBetweenDeffeologicalAndFrechetStructure}{}\subsubsection*{{Embedding of Fr\'e{}chet manifolds into diffeological spaces}}\label{RelationBetweenDeffeologicalAndFrechetStructure} We discuss a natural embedding of [[Fréchet manifolds]] into the category of diffeological spaces. \begin{defn} \label{}\hypertarget{}{} Define a [[functor]] \begin{displaymath} \iota \colon FrechetManifolds \to DiffeologicalSpaces \end{displaymath} in the evident way by taking for $X$ a [[Fréchet manifold]] for any $U \in$ [[CartSp]] the set of $U$-plots of $\iota(X)$ to be the set of smooth functions $U \to X$. \end{defn} \begin{prop} \label{FrechetEmbedding}\hypertarget{FrechetEmbedding}{} The functor $\iota \colon FrechetManifolds \hookrightarrow DiffeologicalSpaces$ is a [[full and faithful functor]]. \end{prop} This appears as (\hyperlink{Losik}{Losik 94, theorem 3.1.1}), as variant of the analogous statement for [[Banach manifolds]] in (\hyperlink{Hain}{Hain}). The fact that maps between Fr\'e{}chet spaces are smooth if and only if they send smooth curves to smooth curves was proved earlier in (\hyperlink{Frolicher}{Fr\"o{}licher 81, th\'e{}or\`e{}me 1}) The statement is also implied by (\hyperlink{KrieglMichor}{Kriegl-Michor 97, cor. 3.14}) which states that functions between [[locally convex vector spaces]] are diffeologically smooth precisely if they send smooth [[curves]] to smooth curves. This is not true if one uses [[Michal-Bastiani smooth map|Michal-Bastiani smoothness]] (\hyperlink{Glockner06}{Gl\"o{}ckner 06}), in which case one merely has a [[faithful functor]] $lctvs \to DiffeologicalSpaces$. Notice that the choice of topology in (\hyperlink{KrieglMichor}{Kriegl-Michor 97}) is such that this equivalence of notions reduces to the above just for Fr\'e{}chet manifolds. \begin{prop} \label{}\hypertarget{}{} Let $X, Y \in SmoothManifold$ with $X$ a [[compact manifold]]. Then under this embedding, the diffeological mapping space structure $C^\infty(X,Y)_{diff}$ on the mapping space coincides with the Fr\'e{}chet manifold structure $C^\infty(X,Y)_{Fr}$: \begin{displaymath} \iota(C^\infty(X,Y)_{Fr}) \simeq C^\infty(X,Y)_{diff} \,. \end{displaymath} \end{prop} This appears as (\hyperlink{Waldorf09}{Waldorf 09, lemma A.1.7}). $\,$ \hypertarget{EmbeddingOfDiffeologicalSpacesIntoTheSheafTopos}{}\subsubsection*{{Embedding of diffeological spaces into smooth sets}}\label{EmbeddingOfDiffeologicalSpacesIntoTheSheafTopos} We discuss how diffeological spaces are equivalently the [[concrete objects]] in the [[cohesive topos]] of [[smooth sets]] (see \href{smooth+set#Cohesion}{there}). \begin{prop} \label{DiffeologicalSpacesAreTheConcreteSmoothSets}\hypertarget{DiffeologicalSpacesAreTheConcreteSmoothSets}{} \textbf{(diffeological spaces are the concrete smooth sets)} The [[full subcategory]] on the [[concrete objects]] in the [[topos]] $SmoothSet \coloneqq Sh(Cart)$ of [[smooth sets]] is [[equivalence of categories|equivalent]] to the category of diffeological spaces \end{prop} \begin{proof} The [[concrete sheaves]] for the [[local topos]] $Sh(CartSp)$ are by definition those objects $X$ for which the $(\Gamma \dashv CoDisc)$-[[unit of an adjunction|unit]] \begin{displaymath} X \to CoDisc \Gamma X \end{displaymath} is a [[monomorphism]]. Monomorphisms of sheaves are tested objectwise, so that means equivalently that for every $U \in CartSp$ we have that \begin{displaymath} X(U) \simeq Hom_{Sh}(U,X) \to Hom_{Sh}(U, Codisc \Gamma X) \simeq Hom_{Set}(\Gamma U, \Gamma X) \end{displaymath} is a monomorphism. This is precisely the condition on a sheaf to be a diffeological space. \end{proof} For a fully detailed proof see \href{geometry+of+physics+--+smooth+sets#DiffeologicalSpacesAreTheConcreteSmoothSets}{this Prop.} at \emph{[[geometry of physics -- smooth sets]]}. \begin{cor} \label{}\hypertarget{}{} The category of diffeological spaces is a [[quasitopos]]. \end{cor} \begin{proof} This follows from the discussion at \hyperlink{Locality}{Locality}. \end{proof} This has some immediate general abstract consequences \begin{cor} \label{}\hypertarget{}{} The category of diffeological spaces is \begin{itemize}% \item a [[cartesian closed category]] \item a [[closed monoidal category]]. \end{itemize} \end{cor} \hypertarget{EmbeddingOfDiffeologicalSpacesIntoHigherDifferentialGeometry}{}\subsubsection*{{Embedding of diffeological spaces into higher differential geometry}}\label{EmbeddingOfDiffeologicalSpacesIntoHigherDifferentialGeometry} In the last section we saw the embedding of diffeological spaces as precisely the [[concrete objects]] is the [[sheaf topos]] $Sh(CartSp) \simeq Sh(SmthMfd)$ of [[smooth sets]]. This is a general context for [[differential geometry]]. From there one can pass further to [[higher differential geometry]]: the topos of smooth sets in turn embeds \begin{displaymath} Sh(CartSp) \hookrightarrow Smooth \infty Grpd \coloneqq Sh_\infty(CartSp) \end{displaymath} into the [[(∞,1)-topos]] [[Smooth∞Grpd]] of ``higher [[smooth sets]]'' --[[smooth ∞-groupoids]] -- as precisely the [[truncated object in an (∞,1)-category|0-truncated objects]]. \hypertarget{distribution_theory}{}\subsubsection*{{Distribution theory}}\label{distribution_theory} Since a space of [[smooth functions]] on a [[smooth manifold]] is canonically a diffeological space, it is natural to consider the \emph{smooth} [[linear functionals]] on such [[mapping spaces]]. These turn out to be equivalent to the [[continuous linear functionals]], hence to [[distributional densities]]. See at \emph{[[distributions are the smooth linear functionals]]} for details. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[smooth set]] \item [[diffeological groupoid]], [[diffeological ∞-groupoid]] \item [[connectology]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The basic idea of understanding a smooth space as a [[concrete sheaf]] on a site of smooth test spaces originates in work of Chen. In \begin{itemize}% \item [[Kuo Tsai Chen]], \emph{Iterated integrals of differential forms and loop space homology}, Ann. Math. 97 (1973), 217--246. \end{itemize} he considered (apart from [[iterated integrals]]) effectively [[presheaves]] on a site of [[convex subsets]] of [[Cartesian spaces]]. In \begin{itemize}% \item [[Kuo Tsai Chen]], Iterated integrals, fundamental groups and covering spaces, Trans. Amer. Math. Soc. 206 (1975), 83--98. \end{itemize} roughly the [[sheaf]] condition was added (without using any of this sheaf-theoretic terminology). The definition of \emph{[[Chen smooth spaces]]} stabilized in \begin{itemize}% \item [[Kuo Tsai Chen]], \emph{Iterated path integrals} , Bull. Amer. Math. Soc. 83, (1977), 831--879. \end{itemize} and served as the basis of a celebrated theorem on the [[de Rham cohomology]] of [[loop spaces]]. The variant of this idea with the site of convex subsets replaced by that of open subsets (and hence equivalently by the site [[CartSp]]${}_{smooth}$) appeared in The [[diffeological space]]-structure is at least implicit in \begin{itemize}% \item [[Jean-Marie Souriau]], \emph{Groupes diff\'e{}rentiels}, in \emph{Differential Geometrical Methods in Mathematical Physics} (Proc. Conf., Aix-en-Provence/Salamanca, 1979), Lecture Notes in Math. 836, Springer, Berlin, (1980), pp. 91--128. (\href{http://www.ams.org/mathscinet-getitem?mr=607688}{MathScinet}) \end{itemize} motivated from the desire to realize the infinite dimensional groups that appear in [[geometric quantization]], such that (Hamiltonian) [[diffeomorphism group]] and their [[group extensions]] by [[quantomorphism groups]] as [[diffeological groups]]. A detailed discussion of the relations of these and other variants of the definition is in \begin{itemize}% \item [[Andrew Stacey]], \emph{Comparative Smootheology}, Theory and Applications of Categories, Vol. 25, 2011, No. 4, pp 64-117. (\href{http://www.tac.mta.ca/tac/volumes/25/4/25-04abs.html}{tac}) \end{itemize} The article \begin{itemize}% \item [[John Baez]], [[Alexander Hoffnung]], \emph{Convenient Categories of Smooth Spaces} (\href{http://arxiv.org/abs/0807.1704}{arXiv}) \end{itemize} amplifies the point that diffeological spaces are [[concrete sheaves]]. A textbook about [[differential geometry]] formulated in terms of diffeological spaces is \begin{itemize}% \item [[Patrick Iglesias-Zemmour]], \emph{Diffeology}, Mathematical Surveys and Monographs, AMS (2013) (\href{http://math.huji.ac.il/~piz/Site/The%20Book.html}{web}, \href{http://www.ams.org/bookstore-getitem/item=SURV-185}{publisher}) \end{itemize} The term ``diffeological space'' originates here. The thesis \begin{itemize}% \item [[Patrick Iglesias-Zemmour]], \emph{Fibrations diff\'e{}ologiques et Homotopie}, PhD thesis (1985) (\href{http://math.huji.ac.il/~piz/documents/TheseEtatPI.pdf}{pdf}) \end{itemize} contains some useful material that hasn't yet made it into the book. Exposition and lecture notes are in \begin{itemize}% \item [[Patrick Iglesias-Zemmour]], \emph{Diffeologies}, talk at \emph{[[New Spaces for Mathematics and Physics]]}, IHP Paris 2015 (\href{https://www.youtube.com/watch?v=4sZDmiVOhaA}{video recording}) \item [[Patrick Iglesias-Zemmour]], \emph{An introduction to diffeology}, lecture at \emph{\href{http://www.nesinkoyleri.org/eng/events-detail.php?egitimkod=203}{Modern Mathematics Methods in Physics: Diffeology, Categories and Toposes and Non-commutative Geometry Summer School}}, 2018, to appear in \emph{[[New Spaces for Mathematics and Physics]]} (\href{http://math.huji.ac.il/~piz/documents/AITD.pdf}{pdf}) \end{itemize} Discussion in the context of applications to [[continuum mechanics]] is in \begin{itemize}% \item [[William Lawvere]], [[Stephen Schanuel]] (eds.), \emph{[[Categories in Continuum Physics]]}, Lectures given at a Workshop held at SUNY, Buffalo 1982, Lecture Notes in Mathematics 1174, 986 \end{itemize} \hypertarget{full_subcategories}{}\subsubsection*{{Full subcategories}}\label{full_subcategories} The [[full subcategory]]-inclusion of [[Banach manifolds]] into the category of diffeological spaces is due to \begin{itemize}% \item [[Richard Hain]], \emph{A characterization of smooth functions defined on a Banach space}, Proc. Amer. Math. Soc. 77 (1979), 63-67 (\href{http://www.ams.org/journals/proc/1979-077-01/S0002-9939-1979-0539632-8/home.html}{web}, \href{http://www.ams.org/journals/proc/1979-077-01/S0002-9939-1979-0539632-8/S0002-9939-1979-0539632-8.pdf}{pdf}) \end{itemize} The (non-full) embedding of [[locally convex vector spaces]] and [[Michal-Bastiani smooth maps]] into diffeological spaces is discussed around corollary 3.14 in \begin{itemize}% \item [[Andreas Kriegl]], [[Peter Michor]]: \emph{[[The convenient setting of global analysis]]}, AMS (1997) \end{itemize} That there are diffeologically-smooth maps between locally convex vector spaces that are not continuous, and a fortiori not smooth in the sense of Michal-Bastiani is given, for instance, in \begin{itemize}% \item Helge Gl\"o{}ckner, \emph{Discontinuous non-linear mappings on locally convex direct limits}, Publ. Math. Debrecen 68 (2006) 1-13, \href{http://arxiv.org/abs/math/0503387}{arXiv:math/0503387}. \end{itemize} The [[full subcategory]]-inclusion of [[Fréchet manifolds]] into diffeological spaces is discussed in \begin{itemize}% \item M. V. Losik, \emph{Fr\'e{}chet manifolds as diffeological spaces}, Soviet. Math. 5 (1992) \end{itemize} and reviewed in section 3 of \begin{itemize}% \item M. V. Losik, \emph{Categorical Differential Geometry} Cah. Topol. G\'e{}om. Diff\'e{}r. Cat\'e{}g., 35(4):274--290, 1994. \end{itemize} The proof can in fact be deduced from th\'e{}or\`e{}me 1 of \begin{itemize}% \item [[Alfred Frölicher]], \emph{Applications lisses entre espaces et vari\'e{}t\'e{}s de Fr\'e{}chet}, C. R. Acad. Sci. Paris S\'e{}r. I Math. \textbf{293} (1981), no. 2, 125--127. \href{http://gallica.bnf.fr/ark:/12148/bpt6k5533894s/f31.image}{BnF} \end{itemize} The preservation of [[mapping spaces]] under this embedding is due to \begin{itemize}% \item [[Konrad Waldorf]] \emph{Transgression to Loop Spaces and its Inverse I}, Cah. Topol. Geom. Differ. Categ., 2012, Vol. LIII, 162-210 (\href{http://arxiv.org/abs/0911.3212}{arXiv:0911.3212}) \end{itemize} The largest [[topological space|topology]] on the set which underlies a diffeological space with respect to which all plots are [[continuous functions]] (the ``[[D-topology]]'') is studied in \begin{itemize}% \item [[Dan Christensen|J. Daniel Christensen]], Gord Sinnamon, Enxin Wu, \emph{The $D$-topology for diffeological spaces} (\href{http://arxiv.org/abs/1302.2935}{arXiv:1302.2935}) \end{itemize} Some [[homotopy theory]] modeled on diffeological spaces instead of on [[topological spaces]] is discussed in \begin{itemize}% \item [[Dan Christensen|J. Daniel Christensen]], Enxin Wu, \emph{The homotopy theory of diffeological spaces, I. Fibrant and cofibrant objects} (\href{http://arxiv.org/abs/1311.6394}{arXiv:1311.6394}) \end{itemize} The [[full subcategory]]-inclusion of [[manifolds with boundaries and corners]] is discussed in \begin{itemize}% \item [[Serap Gürer]], [[Patrick Iglesias-Zemmour]], \emph{Differential forms on manifolds with boundary and corners}, Indagationes Mathematicae, Volume 30, Issue 5, September 2019, Pages 920-929 (\href{https://doi.org/10.1016/j.indag.2019.07.004}{doi:10.1016/j.indag.2019.07.004}) \end{itemize} \hypertarget{ReferencesForOrbifolds}{}\subsubsection*{{For orbifolds}}\label{ReferencesForOrbifolds} On [[orbifolds]] regarded as naive local quotient diffeological spaces: \begin{itemize}% \item [[Patrick Iglesias-Zemmour]], [[Yael Karshon]], Moshe Zadka, \emph{Orbifolds as diffeologies}, Transactions of the American Mathematical Society 362 (2010), 2811-2831 (\href{https://arxiv.org/abs/math/0501093}{arXiv:math/0501093}) \item [[Jordan Watts]], \emph{The Differential Structure of an Orbifold}, Rocky Mountain Journal of Mathematics, Vol. 47, No. 1 (2017), pp. 289-327 (\href{https://arxiv.org/abs/1503.01740}{arXiv:1503.01740}) \end{itemize} [[!redirects diffeological space]] [[!redirects diffeological spaces]] [[!redirects diffeological structure]] [[!redirects diffeological structures]] [[!redirects diffeology]] [[!redirects diffeologies]] [[!redirects Chen smooth space]] [[!redirects Chen smooth spaces]] \end{document}