\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{differential K-theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{SimonsSullivanModel}{The Simons-Sullivan model}\dotfill \pageref*{SimonsSullivanModel} \linebreak \noindent\hyperlink{idea_2}{Idea}\dotfill \pageref*{idea_2} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{the_bunkeschick_model}{The Bunke-Schick model}\dotfill \pageref*{the_bunkeschick_model} \linebreak \noindent\hyperlink{idea_3}{Idea}\dotfill \pageref*{idea_3} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{the_hopkinssinger_model}{The Hopkins-Singer model}\dotfill \pageref*{the_hopkinssinger_model} \linebreak \noindent\hyperlink{more_models_in_smooth_spectra}{More models in smooth spectra}\dotfill \pageref*{more_models_in_smooth_spectra} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{History}{History}\dotfill \pageref*{History} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{relation_to_index_theory}{Relation to index theory}\dotfill \pageref*{relation_to_index_theory} \linebreak \noindent\hyperlink{in_string_theory}{In string theory}\dotfill \pageref*{in_string_theory} \linebreak \noindent\hyperlink{further}{Further}\dotfill \pageref*{further} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \emph{Differential K-theory} is the refinement of the [[generalized (Eilenberg-Steenrod) cohomology]] theory [[K-theory]] to [[differential cohomology]]. In as far as we can think of cocycles in [[K-theory]] as represented by [[vector bundle]]s or [[vectorial bundle]]s, cocycles in differential K-theory may be represented by [[vector bundle]]s [[connection on a bundle|with connection]]. There are various different models that differ in the concrete realization of these cocycles and in their extra properties. \hypertarget{SimonsSullivanModel}{}\subsection*{{The Simons-Sullivan model}}\label{SimonsSullivanModel} This section discusses the model presented in (\hyperlink{SimonsSullivan}{SimonsSullivan}). More details will eventually be at \begin{itemize}% \item [[Simons-Sullivan structured bundle]]. \end{itemize} \hypertarget{idea_2}{}\subsubsection*{{Idea}}\label{idea_2} In the Simons-Sullivan model cocycles in differential K-theory are represented by ordinary [[vector bundle]]s [[connection on a bundle|with connection]]. The crucial ingredient is that two connections on a vector bundle are taken to be the same representative of a differential K-cocycle if they are related by a [[concordance]] such that the corresponding [[Chern-Simons form]] is exact. \hypertarget{details}{}\subsubsection*{{Details}}\label{details} Let $V \to X$ be a complex [[vector bundle]] with [[connection on a bundle|connection]] $\nabla$ and [[curvature]] 2-form \begin{displaymath} F = F_\nabla \in \Omega^2(X,End(V)) \,. \end{displaymath} \textbf{Definition} The \textbf{[[Chern character]]} of $\nabla$ is the inhomogenous [[curvature characteristic form]] \begin{displaymath} ch(\nabla) := \sum_{j \in \mathbb{N}} k_j tr( F_\nabla \wedge \cdots \wedge F_\nabla) \;\; \in \Omega^{2 \bullet}(X) \,, \end{displaymath} where on the right we have $j$ wedge factors of the [[curvature]] . \textbf{Definition} Let $(V,\nabla)$ and $(V',\nabla')$ be two complex vector bundles with connection. A [[Chern-Simons form]] for this pair is a differential form \begin{displaymath} CS(\nabla,\nabla') + d \omega \in \Omega^{2 \bullet + 1}(X) \end{displaymath} obtained from the [[concordance]] bundle $\bar V \to X \times [0,1]$ given by [[pullback]] along $X \times [0,1] \to X$ equipped with a connection $\bar \nabla$ such that \ldots{}, by \begin{displaymath} CS(\nabla,\nabla') = \int_0^1 \psi_t^* (\iota_{\partial/\partial t} ch(\bar \nabla)) + d (...) \,. \end{displaymath} \textbf{Proposition} This is indeed well defined in that it is independent of the chosen [[concordance]], up to an exact term. \textbf{Definition} A \textbf{structured bundle} in the sense of the Simons-Sullivan model is a complex vector bundle $V$ equipped with the equivalence class $[\nabla]$ of a connection under the equivalence relation that identifies two connections $\nabla$ and $\nabla'$ if their Chern-Simons form $CS(\nabla,\nabla')$ is exact. Two structured bundles are isomorphic if there is a vector bundle isomorphism under which the two equivalence classes of connections are identified. \textbf{Definition} Let $Struc(X)$ be the set of [[isomorphism]] classes of structured bundles on $X$. Under [[direct sum]] and [[tensor product]] of vector bundles, this becomes a commutatve [[rig]]. Let \begin{displaymath} \hat K(X) := K(Struct(X)) \end{displaymath} be the additive [[group completion]] of this rig as usual in [[K-theory]]. So as an additive group $\hat K(X)$ is the quotient of the [[monoid]] induced by [[direct sum]] on pairs $(V,W)$ of isomorphism classes in $Struc(X)$, modulo the sub-monoid consisting of pairs $(V,V)$. Hence the pair $(V,0)$ is the additive inverse to $(0,V)$ and $(V,W)$ may be written as $V - W$. \textbf{Theorem} $\hat K(X)$ is indeed a [[differential cohomology]] refinement of ordinary K-theory $K(X)$ of $X$ (i.e. of the 0th [[cohomology group]] of [[K-theory spectrum|K-cohomology]]). Moreover\ldots{} \hypertarget{the_bunkeschick_model}{}\subsection*{{The Bunke-Schick model}}\label{the_bunkeschick_model} \hypertarget{idea_3}{}\subsubsection*{{Idea}}\label{idea_3} [[Uli Bunke]] and [[Thomas Schick]] developed in a series of articles a differential-geometric cocycle model of differential K-theory where cocycles are given by smooth families of [[Dirac operator]]s. See the reference \href{BunkeSchickReferences}{below}. \hypertarget{properties}{}\subsubsection*{{Properties}}\label{properties} The restriction of the cocycles in the Bunke-Schick model to those whose ``auxialiary form'' $\omega$ vanishes reproduces the Simons-Sullivan model above. \hypertarget{the_hopkinssinger_model}{}\subsection*{{The Hopkins-Singer model}}\label{the_hopkinssinger_model} See at \begin{itemize}% \item \emph{[[differential function complex]]} \item \emph{\href{differential+cohomology+diagram#HSDifferentialKU}{differential cohomology diagram -- Hopkins-Singer differential KU}} \end{itemize} \hypertarget{more_models_in_smooth_spectra}{}\subsection*{{More models in smooth spectra}}\label{more_models_in_smooth_spectra} See at \emph{\href{differential+cohomology+diagram#DifferentialKTheory}{Differential cohomology diagram -- Differential K-theory}}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item In [[gauge theory]] gauge fields are modeled by cocycles in [[differential cohomology]]. The field modeled by differential K-theory is the [[RR-field]]. A kind of [[integral transform]] acting on differential K-theory classes is [[T-duality]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[K-theory]] \item [[topological K-theory]] \item [[twisted K-theory]] \item \textbf{differential K-theory} \begin{itemize}% \item [[fiber integration in differential K-theory]] \item [[algebraic K-theory of smooth manifolds]] \end{itemize} \item [[twisted differential K-theory]] \item [[differential algebraic K-theory]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{History}{}\subsubsection*{{History}}\label{History} An early sketch of a definition, motivated by the description of [[D-brane charge]] in [[string theory]], is in \begin{itemize}% \item [[Daniel Freed]], \emph{[[Dirac charge quantization and generalized differential cohomology]]}, Surveys in Differential Geometry, Int. Press, Somerville, MA, 2000, pp. 129--194 (\href{http://arxiv.org/abs/hep-th/0011220}{arXiv:hep-th/0011220}) \item [[Daniel Freed]], [[Michael Hopkins]], \emph{On Ramond-Ramond fields and K-theory}, JHEP (2000) 44, 14 (\href{http://arxiv.org/abs/hep-th/0002027}{arXiv:hep-th/0002027}) \end{itemize} Then the general construction of [[differential cohomology]] theories via [[differential function complexes]] of \begin{itemize}% \item [[Michael Hopkins]], [[Isadore Singer]], \emph{Quadratic Functions in Geometry, Topology, and M-Theory}, J. Differential Geom. Volume 70, Number 3 (2005), 329-452 (\href{http://arxiv.org/abs/math.AT/0211216}{arXiv:math.AT/0211216}) \end{itemize} (motivated in turn by [[7d Chern-Simons theory]] and the [[M5-brane]] [[partition function]]) provides in particular a model for differential K-theory. For more historical remarks see section 1.6 of \begin{itemize}% \item [[Daniel Freed]], [[John Lott]], \emph{An index theorem in differential K-theory}, Geometry and Topology 14 (2010) (\href{http://math.berkeley.edu/~lott/gt-2010-14-021p.pdf}{pdf}) \end{itemize} A discussion of more models and their relation in the context of [[cohesive homotopy type theory]] and the [[differential cohomology hexagon]] then appears in \begin{itemize}% \item [[Ulrich Bunke]], [[Thomas Nikolaus]], [[Michael Völkl]], section 6 of \emph{Differential cohomology theories as sheaves of spectra} (\href{http://arxiv.org/abs/1311.3188}{arXiv:1311.3188}) \end{itemize} \hypertarget{general}{}\subsubsection*{{General}}\label{general} A review is in \begin{itemize}% \item [[Ulrich Bunke]], [[Thomas Schick]], \emph{Differential K-theory. A survey} (\href{http://arxiv.org/abs/1011.6663}{arXiv:1011.6663}). \end{itemize} The Simons-Sullivan model is due to \begin{itemize}% \item [[James Simons]], [[Dennis Sullivan]], \emph{Structured vector bundles define differential K-theory} (\href{http://arxiv.org/abs/0810.4935}{arXiv:0810.4935}) \end{itemize} The basic article for the Bunke-Schick model is \begin{itemize}% \item [[Ulrich Bunke]], [[Thomas Schick]], \emph{Smooth K-Theory} (\href{http://arxiv.org/abs/0707.0046}{arXiv:0707.0046}) \end{itemize} A survey talk is \begin{itemize}% \item [[Ulrich Bunke]], \emph{Differential cohomology in geometry and analysis} (\href{http://www.uni-regensburg.de/Fakultaeten/nat_Fak_I/Bunke/Vortrag-Erlangen.pdf}{pdf slides}) \end{itemize} Differential [[KO-theory]] is studied in \begin{itemize}% \item Daniel Grady, [[Hisham Sati]], \emph{Differential KO-theory: Constructions, computations, and applications} (\href{https://arxiv.org/abs/1809.07059}{arXiv:1809.07059}) \end{itemize} Discussion of [[twisted K-theory|twisted]] [[differential K-theory|differential]] [[KO-theory|orthogonal]] [[topological K-theory|K-theory]] in \begin{itemize}% \item Daniel Grady, [[Hisham Sati]], \emph{Twisted differential KO-theory} (\href{https://arxiv.org/abs/1905.09085}{arXiv:1905.09085}) \end{itemize} The differential version of [[equivariant K-theory]] is in \begin{itemize}% \item [[Ulrich Bunke]], [[Thomas Schick]], \emph{Differential orbifold $K$-Theory} (\href{http://arxiv.org/abs/0905.4181}{arXiv:0905.4181}) \end{itemize} The equivalence of these models with the respective special case of the general construction in \begin{itemize}% \item [[Mike Hopkins]], [[Isadore Singer]], \emph{[[Quadratic Functions in Geometry, Topology, and M-Theory]]} \end{itemize} in terms of [[differential function complexes]] is in \begin{itemize}% \item Kevin Klonoff, \emph{An Index Theorem in Differential K-Theory} PdD thesis (2008) (\href{http://www.lib.utexas.edu/etd/d/2008/klonoffk16802/klonoffk16802.pdf}{pdf}) \end{itemize} (assuming the existence of a universal connection, which is not strictly proven) and \begin{itemize}% \item Michael L. Ortiz, \emph{Differential Equivariant K-Theory} (\href{http://arxiv.org/abs/0905.0476}{arXiv:0905.0476}) \end{itemize} (not needing that assumption). A construction of [[differential cobordism cohomology]] theory in terms of explicit geometric cocycles is in \begin{itemize}% \item [[Ulrich Bunke]], [[Thomas Schick]], Ingo Schroeder, Moritz Wiethaup \emph{Landweber exact formal group laws and smooth cohomology theories} (\href{http://arxiv.org/abs/0711.1134}{arXiv:0711.1134}) \end{itemize} By tensoring this with the suitable ring, this also gives a model for differential K-theory, as well as for [[differential elliptic cohomology]]. A variant of this definition with the advantage that there is a natural morphism to [[Cheeger-Simons differential characters]] refining the total [[Chern class]] is (as opposed to the [[Chern character]]) is presented in \begin{itemize}% \item Alain Berthomieu, \emph{A version of smooth K-theory adapted to the total Chern class} (\href{http://arxiv.org/PS_cache/arxiv/pdf/0806/0806.4728v1.pdf}{pdf}) \end{itemize} Discussion for the [[odd Chern character]] is in \begin{itemize}% \item [[Thomas Tradler]], [[Scott Wilson]], [[Mahmoud Zeinalian]], \emph{An Elementary Differential Extension of Odd K-theory}, J. of K-theory, K-theory and its Applications to Algebra, Geometry, Analysis and Topology, (\href{http://arxiv.org/abs/1211.4477}{arXiv:1211.4477}) \item [[Scott Wilson]], \emph{A loop group extension of the odd Chern character} (\href{http://arxiv.org/abs/1311.6393}{arXiv:1311.6393}) \end{itemize} \hypertarget{relation_to_index_theory}{}\subsubsection*{{Relation to index theory}}\label{relation_to_index_theory} Relation to [[index theory]]: \begin{itemize}% \item Kevin Klonoff, \emph{An Index Theorem in Differential K-Theory} PdD thesis (2008) (\href{http://www.lib.utexas.edu/etd/d/2008/klonoffk16802/klonoffk16802.pdf}{pdf}) \item [[Daniel Freed]], [[John Lott]], \emph{An index theorem in differential K-theory}, Geometry and Topology 14 (2010) (\href{http://math.berkeley.edu/~lott/gt-2010-14-021p.pdf}{pdf}) \end{itemize} See also the references at \emph{[[fiber integration in differential K-theory]]}. \hypertarget{in_string_theory}{}\subsubsection*{{In string theory}}\label{in_string_theory} A survey of the role of differential $K$-theory in [[quantum field theory]] and [[string theory]] is in \begin{itemize}% \item [[Daniel Freed]], \emph{K-Theory in Quantum Field Theory}, Current developments in Mathematics (2001) International Press Somerville (\href{http://arxiv.org/abs/math-ph/0206031}{arXiv:math-ph/0206031}) \end{itemize} The operation of [[T-duality]] on hypothetical [[twisted differential K-theory]] is discussed in \begin{itemize}% \item [[Alexander Kahle]], [[Alessandro Valentino]], \emph{[[T-Duality and Differential K-Theory]]} \end{itemize} Discussion of [[twisted K-theory|twisted]] [[differential K-theory|differential]] [[topological K-theory|K-theory]] and its relation to [[D-brane charge]] in [[type II string theory]] (see also \href{D-brane#ReferencesKTheoryDescription}{there}): \begin{itemize}% \item Daniel Grady, [[Hisham Sati]], \emph{Ramond-Ramond fields and twisted differential K-theory} (\href{https://arxiv.org/abs/1903.08843}{arXiv:1903.08843}) \end{itemize} Discussion of [[twisted K-theory|twisted]] [[differential K-theory|differential]] [[KO-theory|orthogonal]] [[topological K-theory|K-theory]] and its relation to [[D-brane charge]] in [[type I string theory]] (on [[orientifolds]]): \begin{itemize}% \item Daniel Grady, [[Hisham Sati]], \emph{Twisted differential KO-theory} (\href{https://arxiv.org/abs/1905.09085}{arXiv:1905.09085}) \end{itemize} \hypertarget{further}{}\subsubsection*{{Further}}\label{further} See also \begin{itemize}% \item Thomas Tradler, Scott O. Wilson, [[Mahmoud Zeinalian]], \emph{Loop Differential K-theory} (\href{http://arxiv.org/abs/1201.4593}{arXiv:1201.4593}) \end{itemize} \end{document}