\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{differential fivebrane structure} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{chernweil_theory}{}\paragraph*{{$\infty$-Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{ChernWeilTheory}{Construction in terms of $L_\infty$-Cech cocycles}\dotfill \pageref*{ChernWeilTheory} \linebreak \noindent\hyperlink{presentation_of_the_differential_class_by_a_fibration}{Presentation of the differential class by a fibration}\dotfill \pageref*{presentation_of_the_differential_class_by_a_fibration} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Where a [[fivebrane structure]] is a trivialization of a class in [[integral cohomology]], a \emph{differential fivebrane structure} is the trivialization of this class refined to [[ordinary differential cohomology]]: the second fractional [[Pontryagin class]] \begin{displaymath} \frac{1}{6} p_2 : B String \to B^8 \mathbb{Z} \end{displaymath} in the [[(∞,1)-topos]] [[∞Grpd]] $\simeq$ [[Top]] has a refinement to $\mathbf{H} =$ [[Smooth∞Grpd]] of the form \begin{displaymath} \frac{1}{6}\mathbf{p}_2 : \mathbf{B}String \to \mathbf{B}^7 U(1) \end{displaymath} -- the . The induced morphism on [[cocycle]] [[∞-groupoid]]s \begin{displaymath} \frac{1}{6}\mathbf{p}_2 : \mathbf{H}(X,\mathbf{B} String) \stackrel{}{\to} \mathbf{H}(X,\mathbf{B}^7 U(1)) \end{displaymath} sends a [[string 2-group]]-[[principal 2-bundle]] $P$ to its corresponding [[Chern-Simons circle 7-bundle]] $\frac{1}{6}\mathbf{p}_2(P)$. A choice of trivialization of $\frac{1}{6}p_2(P)$ is a [[fivebrane structure]]. The [[n-groupoid|6-groupoid]] of smooth fivebrane structures is the [[homotopy fiber]] of $\frac{1}{6}\mathbf{p}_2$ over the trivial [[circle n-bundle with connection|circle 7-bundle]]. By [[Chern-Weil theory in Smooth∞Grpd]] this morphism may be further refined to a [[differential characteristic class]] $\frac{1}{6}\hat \mathbf{p}_2$ that lands in the [[ordinary differential cohomology]] $\mathbf{H}_{diff}(X, \mathbf{B}^7 U(1))$, classifying [[circle n-bundle with connection|circle 7-bundles with connection]] \begin{displaymath} \frac{1}{6}\hat \mathbf{p}_2 : \mathbf{H}_{conn}(X,\mathbf{B} String) \stackrel{}{\to} \mathbf{H}_{diff}(X,\mathbf{B}^7 U(1)) \end{displaymath} The [[n-groupoid|7-groupoid]] of \textbf{differential fivebrane structures} is the [[homotopy fiber]] of this refinement $\frac{1}{6}\hat \mathbf{p}_2$ over the [[circle n-bundle with connection|trivial circle 7-bundle with trivial connection]] or more generally over the trivial circle 7-bundles with possibly non-trivial connection. Such a differential fivebrane structure over a [[smooth manifold]] $X$ is characterized by a tuple consisting of \begin{enumerate}% \item a [[connection on a 2-bundle|2-connection]] $\nabla$ on a [[string 2-group|String]]-[[principal 2-bundle]] on $X$; \item a choice of trivial [[circle n-bundle with connection|circle 7-bundle]] with connection $(0, H_7)$, hence a differential 7-form $H_7 \in \Omega^7(X)$; \item a choice of [[equivalence in an (∞,1)-category|equivalence]] $\lambda$ of the [[Chern-Simons circle 7-bundle]] with connection $\frac{1}{6}\hat\mathbf{p}_2(\nabla)$ of $\nabla$ with this chosen 7-bundle \end{enumerate} \begin{displaymath} \lambda : \frac{1}{6}\hat \mathbf{p}_2(\nabla) \stackrel{\simeq}{\to} (0,H_7) \,. \end{displaymath} More generally, one can consider the [[homotopy fiber]]s of $\frac{1}{6}\hat \mathbf{p}_2$ over arbitrary circle 7-bundles with connection $\hat \mathcal{G}_8 \in \mathbf{H}_{diff}^8(X, \mathbf{B}^3 U(1))$ and hence replace $(0,H_7)$ in the above with $\hat \mathcal{G}_8$. According to the general notion of [[twisted cohomology]], these may be thought of as \textbf{twisted differential string structures}, where the class $[\mathcal{G}_8] \in H^8_{diff}(X)$ is the twist. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} We will assume that the reader is familiar with basics of the discussion at [[Smooth∞Grpd]]. We often write $\mathbf{H} := Smooth \infty Grpd$ for short. Let $String(n) \in$ [[Smooth∞Grpd]] be the smooth [[String 2-group]], for some $n \gt 6$,\footnote{for $n=3,4,5,6$ $String(n)$ is not 6-connected, so one must take extra care with the intervening stages in the [[Whitehead tower]].} regarded as a [[Lie 2-group]] and thus canonically as an [[∞-group]] object in [[Smooth∞Grpd]]. We shall notationally suppress the $n$ in the following. Write $\mathbf{B}String$ for its [[delooping]] of $Spin$ in [[Smooth∞Grpd]]. (See the discussion ). Let moreover $\mathbf{B}^6 U(1) \in Smooth \infty Grpd$ be the and $\mathbf{B}^7 U(1)$ its [[delooping]]. At [[Chern-Weil theory in Smooth∞Grpd]] the following statement is proven (\hyperlink{FSS}{FSS}). \begin{uprop} The image under [[Lie integration]] of the canonical [[Lie algebra cohomology|Lie algebra 7-cocycle]] \begin{displaymath} \mu = \langle -,[-,-], [-,-], [-,-]\rangle : \mathfrak{so} \to b^6 \mathbb{R} \end{displaymath} on the [[semisimple Lie algebra]] $\mathfrak{so}$ of the [[Spin group]] -- the [[special orthogonal Lie algebra]] -- is a morphism in [[Smooth∞Grpd]] of the form \begin{displaymath} \frac{1}{6} \mathbf{p}_2 : \mathbf{B}String \to \mathbf{B}^7 U(1) \end{displaymath} whose image under the $\Pi : Smooth \infty Grpd \to$ [[∞Grpd]] is the ordinary second fractional [[Pontryagin class]] \begin{displaymath} \frac{1}{6}p_2 : B String \to B^8 \mathbb{Z} \end{displaymath} in [[Top]]. Moreover, the corresponding \begin{displaymath} \frac{1}{6}\hat \mathbf{p}_2 : \mathbf{H}_{conn}(-,\mathbf{B}String) \to \mathbf{H}_{diff}(-, \mathbf{B}^7 U(1)) \end{displaymath} is in [[cohomology]] the corresponding refined [[Chern-Weil homomorphism]] \begin{displaymath} [\frac{1}{6}\hat \mathbf{p}_String] : H^1_{Smooth}(X,String) \to H_{diff}^8(X) \end{displaymath} with values in [[ordinary differential cohomology]] that corresponds to the second [[Killing form]] [[invariant polynomial]] $\langle - , - ,-,-\rangle$ on $\mathfrak{so}$. \end{uprop} \begin{udef} For any $X \in$ [[Smooth∞Grpd]], the [[n-groupoid|6-groupoid]] of \textbf{differential fivebrane-structures} on $X$ -- $Fivebrane_{diff}(X)$ -- is the [[homotopy fiber]] of $\frac{1}{6}\hat \mathbf{p}_2(X)$ over the trivial differential cocycle. More generally (see [[twisted cohomology]]) the 6-groupoid of \textbf{twisted differential fivebrane structures} is the [[(∞,1)-pullback]] $Fivebrane_{diff,tw}(X)$ in \begin{displaymath} \itexarray{ Fivebrane_{diff,tw}(X) &\to& H_{diff}^8(X) \\ \downarrow && \downarrow \\ \mathbf{H}_{conn}(X,\mathbf{B}String) &\stackrel{\frac{1}{6}\hat \mathbf{p}_2}{\to}& \mathbf{H}_{diff}(X,\mathbf{B}^7 U(1)) } \,, \end{displaymath} where the right vertical morphism is a choice of (any) one point in each [[connected component]] (differential cohomology class) of the [[cocycle]] [[∞-groupoid]] $\mathbf{H}_{diff}(X,\mathbf{B}^7 U(1))$ (the [[homotopy type]] of the [[(∞,1)-pullback]] is independent of this choice). \end{udef} \begin{uremark} In terms of local [[∞-Lie algebra valued differential forms]] data this has been considered in (\hyperlink{SSSIII}{SSSIII}), as we shall discuss \hyperlink{ChernWeilTheory}{below}. \end{uremark} \hypertarget{ChernWeilTheory}{}\subsection*{{Construction in terms of $L_\infty$-Cech cocycles}}\label{ChernWeilTheory} We use the [[presentable (∞,1)-category|presentation]] of the [[(∞,1)-topos]] [[Smooth∞Grpd]] (as described there) by the local [[model structure on simplicial presheaves]] $[CartSp_{smooth}^{op}, sSet]_{proj,loc}$ to give an explicit construction of twisted differential fivebrane structures in terms of [[Cech cohomology|Cech]]-cocycles with coefficients in [[∞-Lie algebra valued differential forms]]. Recall the following fact from [[Chern-Weil theory in Smooth∞Grpd]] (\hyperlink{FSS}{FSS}). \begin{uprop} The differential second fractional Pontryagin class $\frac{1}{6} \hat \mathbf{p}_2$ is presented in $[CartSp_{smooth}^{op}, sSet]_{proj}$ by the top morphism of simplicial presheaves in \begin{displaymath} \itexarray{ \mathbf{cosk}_7\exp(\mathfrak{so})_{ChW,smp} &\stackrel{\exp(\mu, cs)}{\to}& \mathbf{B}^7 \mathbb{R}/\mathbb{Z}_{ChW,smp} \\ \downarrow && \downarrow \\ \mathbf{cosk}_7\exp(\mathfrak{so})_{diff,smp} &\stackrel{\exp(\mu, cs)}{\to}& \mathbf{B}^7 \mathbb{R}/\mathbb{Z}_{smp} \\ \downarrow^{\mathrlap{\simeq}} \\ \mathbf{B}String_{c} } \,. \end{displaymath} \end{uprop} Here the middle morphism is the direct [[Lie integration]] of the [[infinity-Lie algebra cohomology|L-∞ algebra cocycle]] while the top morphisms is its restriction to coefficients for [[connection on an ∞-bundle|∞-connections]]. In order to compute the [[homotopy fiber]]s of $\frac{1}{6}\hat \mathbf{p}_2$ we now find a [[resolution]] of this morphism $\exp(\mu,cs)$ by a fibration in $[CartSp_{smooth}^{op}, sSet]_{proj}$. By the fact that this is a [[simplicial model category]] then also the hom of any cofibrant object into this morphism, computing the cocycle $\infty$-groupoids, is a fibration, and therefore, by the general discussion at [[homotopy pullback]], we obtain the [[homotopy fiber]]s as the ordinary [[fiber]]s of this fibration. \hypertarget{presentation_of_the_differential_class_by_a_fibration}{}\subsubsection*{{Presentation of the differential class by a fibration}}\label{presentation_of_the_differential_class_by_a_fibration} (\ldots{}) The discussion is analogous to that at [[differential string structure]]. To be filled in (\ldots{}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[Whitehead tower]] of the [[orthogonal group]] \begin{itemize}% \item [[orientation]] \item [[spin structure]] \item [[string structure]] \item [[fivebrane structure]] \item [[twisted differential c-structure]] \begin{itemize}% \item [[differential string structure]] \item [[supergravity C-field]] \item \textbf{differential fivebrane structure} \item [[differential T-duality]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The local data for the [[∞-Lie algebra valued differential forms]] for the description of twisted differential fivebrane structures as above was given in \begin{itemize}% \item [[Hisham Sati]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{Twisted differential string and fivebrane structures} () \end{itemize} The full Cech-Deligne cocycles induced by this and their homotopy fibers were discussed in \begin{itemize}% \item [[Domenico Fiorenza]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{[[schreiber:Cech cocycles for differential characteristic classes]]} \end{itemize} A general discussion is at \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} \end{itemize} in section 4.2. [[!redirects differential fivebrane structures]] [[!redirects twisted differential fivebrane structure]] [[!redirects twisted differential fivebrane structures]] [[!redirects twisted differential Fivebrane structure]] [[!redirects twisted differential Fivebrane structures]] [[!redirects smooth second fractional Pontryagin class]] \end{document}