\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{differential forms in synthetic differential geometry} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_geometry}{}\paragraph*{{Differential geometry}}\label{differential_geometry} [[!include synthetic differential geometry - contents]] \hypertarget{content}{}\section*{{Content}}\label{content} \noindent\hyperlink{content}{Content}\dotfill \pageref*{content} \linebreak \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{differential_forms}{differential forms}\dotfill \pageref*{differential_forms} \linebreak \noindent\hyperlink{coboundary_operator}{coboundary operator}\dotfill \pageref*{coboundary_operator} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\section*{{Idea}}\label{idea} In the context of [[synthetic differential geometry]] a [[differential form]] $\omega$ of degree $k$ on a [[manifold]] $X$ is literally a function on the space of \emph{infinitesimal cubes} or \emph{infinitesimal simplices} in $X$. We give the definition as available in the literature and then interpret this in a more unified way in terms of the [[schreiber:Chevalley-Eilenberg algebra|Chevalley-Eilenberg algebra]] of the [[infinitesimal singular simplicial complex]]. \hypertarget{definition}{}\section*{{Definition}}\label{definition} \begin{quote}% missing here are details on what axioms the space we are working on has to satisfy for the following to make sense. See the case distinction at [[infinitesimal singular simplicial complex]]. \end{quote} \hypertarget{differential_forms}{}\subsection*{{differential forms}}\label{differential_forms} An \textbf{infinitesimal $k$-simplex} in a synthetic differential space $X$ is a collection of $k+1$-points in $X$ that are pairwise infinitesimal neighbours. The spaces $X^{\Delta^k_{diff}}$ of infinitesimal $k$-simplices arrange to form the [[infinitesimal singular simplicial complex]] $X^{\Delta^\bullet_{diff}}$. The functions on the space of infinitesimal $k$-simplices form a [[generalized smooth algebra]] $C^\infty(X^{\Delta^k_{inf}})$. A \textbf{differential $k$-form} (often called simplicial $k$-form or, less accurately, \textbf{combinatorial $k$-form} to distinguish it from similar but cubical definitions) on $X$ is an element in this function algebra that has the property that it vanishes on degenerate infinitesimal simplices. See definition 3.1.1 in \begin{itemize}% \item Anders Kock, \emph{Synthetic geometry of manifolds} (\href{http://home.imf.au.dk/kock/SGM-kopi.pdf}{pdf}) \end{itemize} for this simplicial definition. A detailed account of this is in the entry [[infinitesimal object]] in the section \href{http://ncatlab.org/nlab/show/infinitesimal+object#SpacOfInfSimpl}{Spaces of infinitesimal simplices}. This is a very simple-looking statement. The reason is the [[topos]]-theoretic language at work in the background, which takes care that we may talk about [[infinitesimal object]]s as if they were just plain ordinary sets. For a very detailed account of how the above statement is implemented concretely in terms of concrete models for synthetic differential spaces see section 1 of \begin{itemize}% \item Breen, Messing, \emph{Combinatorial differential forms} (\href{http://arxiv.org/abs/math/0005087}{arXiv}) \end{itemize} There are also cubical variants of the above definition \begin{itemize}% \item Anders Kock, \emph{Cubical version of combinatorial differential forms} (\href{http://www.springerlink.com/content/87tj80l51h138177/fulltext.pdf}{pdf for fee}) \end{itemize} See also section 4.1 of \begin{itemize}% \item Moerdijk-Reyes, [[Models for Smooth Infinitesimal Analysis]] \end{itemize} for a realization of the cubical version in models based on sheaves on [[generalized smooth algebra]]s. We may characterize the object $\Omega^k(X) \subset C^\infty(X^{\Delta^k_{inf}})$ as follows: for $k \geq 1$ there are the obvious images \begin{displaymath} s_i^* : C^\infty(X^{\Delta^{k}_{inf}}) \to C^\infty(X^{\Delta^{k-1}_{inf}}) \end{displaymath} of the [[simplicial set|degeneracy maps]]. As one can see, these act by restricting a function on infinitesimal $k$-simplices to the degenerate ones and regarding these then as a $(k-1)$-simplex. Therefore we may characterize the subobject $\Omega^k(X) \hookrightarrow C^\infty(X^{\Delta^k_{inf}})$ as the joint kernel of the degeneracy maps \begin{displaymath} \Omega^k(X) = \cap_{i = 0}^{k-1} ker(s_i^*) \,. \end{displaymath} \hypertarget{coboundary_operator}{}\subsection*{{coboundary operator}}\label{coboundary_operator} According to section 3.2 of Andres Kock's book, the coboundary operator $d : \Omega^k(X) \to \Omega^{k+1}(X)$ sends a differential $k$-form $\omega$ to the $(k+1)$-form $d \omega$ that on an infinitesimal $(k+1)$-simplex $(x_0, x_1, \cdots, x_{k+1})$ in $X$ evaluates to \begin{displaymath} d\omega(x_0, x_1, \cdots, x_{k+1}) := \sum_{i=0}^{k+1} \omega(x_0, \cdots , \hat{x_i}, \cdots, x_{k+1}) \,, \end{displaymath} where the hat indicates that the corresponding variable is omitted, as usual. We recognize this as the alternating sum of the [[simplicial identities|face maps]] $\partial_i^*$ of the [[simplicial object|cosimplicial object]] $C^\infty(X^{\Delta_{inf}^\bullet})$. \begin{displaymath} d := \sum_{i=0}^{k+1} \partial_i^* : \Omega^k(X) \to \Omega^{k+1}(X) \,. \end{displaymath} These constructions remind one and should be compared with the [[Dold-Kan correspondence]]. In particular with its \emph{dual} (cosimplicial) version as recalled in section 4 of \href{http://arxiv.org/PS_cache/math/pdf/0306/0306289v3.pdf}{CastiglioniCortinas} In total this should show the following \begin{uprop} Let $X$ be a synthetic differential space and $C^\infty(X^{\Delta_{inf}^\bullet})$ the [[simplicial object|cosimplicial object]] of [[generalized smooth algebra]]s of functions on the spaces of infinitesimal $k$-simplices in $X$. Then the deRham complex $(\Omega^\bullet(X), d)$ of differential forms on $X$ is the normalized [[Moore complex]] of the cosimplicial object $C^\infty(X^{\Delta_{inf}^\bullet})$. \end{uprop} In other words, in as far as the Dold-Kan correspondence is an equivalence, we find that: the object of differential forms on $X$ \emph{is} the cosimplicial [[generalized smooth algebra]] $C^\infty(X^{\Delta_{inf}^k})$. \hypertarget{references}{}\section*{{References}}\label{references} \begin{itemize}% \item [[Anders Kock]], \emph{Synthetic geometry of manifolds} (\href{http://home.imf.au.dk/kock/SGM-kopi.pdf}{pdf}) \item Moerdijk-Reyes, [[Models for Smooth Infinitesimal Analysis]] \item Castiglioni, Cortinas, \emph{Cosimplicial versus DG-rings: a version of the Dold-Kan correspondence} (\href{http://arxiv.org/PS_cache/math/pdf/0306/0306289v3.pdf}{pdf}) \end{itemize} \end{document}