\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{differential forms on simplices} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{smooth_differential_forms}{Smooth differential forms}\dotfill \pageref*{smooth_differential_forms} \linebreak \noindent\hyperlink{Polynomial}{Polynomial differential forms}\dotfill \pageref*{Polynomial} \linebreak \noindent\hyperlink{piecewise_polynomial_differential_forms}{Piecewise polynomial differential forms}\dotfill \pageref*{piecewise_polynomial_differential_forms} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} There are various [[simplicial object|simplicial]] [[dg-algebra]]s that assign to the standard $n$-[[simplex]] a kind of [[de Rham algebra]] on $\Delta^n$. By the discussion at [[differential forms on presheaves]], each such extends to a notion of differential forms on simplicial sets. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{smooth_differential_forms}{}\subsubsection*{{Smooth differential forms}}\label{smooth_differential_forms} \begin{defn} \label{SmoothnSimplex}\hypertarget{SmoothnSimplex}{} \textbf{(smooth $n$-simplex)} For $n \in \mathbb{N}$ the \emph{smooth [[n-simplex]]} $\Delta^n_{smth}$ is the [[smooth manifold]] with [[manifold with boundary|boundary]] and [[manifold with corners|corners]] defined, up to [[isomorphism]], as the following locus inside the [[Cartesian space]] $\mathbb{R}^{n+1}$: \begin{displaymath} \Delta^n_{smth} \;\coloneqq\; \left\{ (x_0, x_1, \cdots, x_n) \in \mathbb{R}^{n+1} \;\vert\; 0 \leq x_i \leq 1 \;\text{and}\; \underoverset{i = 0}{n}{\sum} x_i \; = 0 \right\} \hookrightarrow \mathbb{R}^{n+1} \,. \end{displaymath} For $0 \leq i \leq n$ the [[function]] \begin{displaymath} x_i \;\colon\; \Delta^n_{smth} \to \mathbb{R} \end{displaymath} which picks the $i$th component in the above definition is called the $i$th \emph{barycentric coordinate function}. For \begin{displaymath} f \;\colon\; [n_1] \longrightarrow [n_2] \end{displaymath} a morphism of finite non-empty [[linear orders]] $[n] \coloneqq \{0 \lt 1 \lt \cdots \lt n\}$, let \begin{displaymath} \Delta_{smth}(f) \;\colon\; \Delta^{n_1}_{smth} \longrightarrow \Delta^{n_2}_{smth} \end{displaymath} be the [[smooth function]] defined by $x_i \mapsto x_{f(i)}$. \end{defn} \begin{defn} \label{SmoothDifferentialFormsOnSmoothnSimplex}\hypertarget{SmoothDifferentialFormsOnSmoothnSimplex}{} \textbf{(smooth differential forms on the smooth $n$-simplex)} For $k \in \mathbb{N}$ then a [[smooth differential k-form]] on the smooth $n$-simplex (def. \ref{SmoothnSimplex}) is a smooth differential form in the sense of [[smooth manifolds]] with [[manifold with boundary|boundary]] and [[manifold with corners|corners]]. Explicitly this means the following. Let \begin{displaymath} F^n \;\coloneqq\; \left\{ (x_0, x_1, \cdots, x_n) \in \mathbb{R}^{n+1} \;\vert\; \underoverset{i = 0}{n}{\sum} x_i \; = 0 \right\} \hookrightarrow \mathbb{R}^{n+1} \end{displaymath} be the affine plane in $\mathbb{R}^{n+1}$ that contains $\Delta^n_{smth}$ in its defining inclusion from def. \ref{SmoothnSimplex}. This is a [[smooth manifold]] [[diffeomorphism|diffeomorphic]] to the [[Cartesian space]] $\mathbb{R}^{n}$. A smooth differential form on $\Delta^n_{smth}$ of degree $k$ is a collection of [[linear functions]] \begin{displaymath} \wedge^k T_x F^n \longrightarrow \mathbb{R} \end{displaymath} out of the $k$-fold skew-symmetric [[tensor power]] of the [[tangent space]] of $F^n$ at some point $x$ to the [[real numbers]], for all $x \in \Delta^n_{smth}$ such that this extends to a smooth differential $k$-form on $F^n$. Write $\Omega^\bullet(\Delta^n_{smth})$ for the graded [[real vector space]] defined this way. By definition there is then a canonical linear map \begin{displaymath} \Omega^\bullet(F^n) \longrightarrow \Omega^\bullet(\Delta^n_{smth}) \end{displaymath} from the [[de Rham complex]] of $F^n$ and there is a unique structure of a [[differential graded-commutative algebra]] on $\Omega^\bullet(\Delta^n_{smth})$ that makes is a [[homomorphism]] of [[dg-algebras]] form the [[de Rham algebra]] of $F^n$. This is the de Rham algebra of smooth differential forms on the smooth $n$-simplex. For $f \colon [n_1] \to [n_2]$ a homomorphism of finite non-empty [[linear orders]] with $\Delta_{smth}(f) \colon \Delta^{n_1}_{smth} \to \Delta^{n_2}_{smth}$ the corresponding smooth function according to def. \ref{SmoothnSimplex}, there is the induced [[homomorphism]] of [[differential graded-commutative algebras]] \begin{displaymath} (\Delta_{smth}(f))^\ast \;\colon\; \Omega^\bullet(\Delta^{n_2}_{smth}) \longrightarrow \Omega^\bullet(\Delta^{n_1}_{smth}) \end{displaymath} induced from the usual [[pullback of differential forms]] on $F^n$. This makes smooth differential forms on smooth simplices be a [[simplicial object]] in [[differential graded-commutative algebras]]: \begin{displaymath} \Omega^\bullet(\Delta^{(-)}_{smth}) \;\colon\; \Delta^{op} \longrightarrow dgcAlg_{\mathbb{R}} \,. \end{displaymath} \end{defn} The standard proof of the [[Poincaré lemma]] applies to show that \begin{displaymath} H^\bullet(\Omega^\bullet(\Delta^n_{smth})) \simeq \mathbb{R} \,. \end{displaymath} Each element of $\Omega^p_{poly}(\Delta^n)$ may be uniquely written \begin{displaymath} \Phi =\sum_{1\leq i_1\lt\ldots\lt i_p\leq n}\Phi_{i_1\ldots i_p}d b_{i_1}\wedge\ldots d b_{i_p}, \end{displaymath} where $b_j$ is as above the $j^{th}$ barycentric coordinate function and each $\Phi_{i_1\ldots i_p}$ is a $C^\infty$-function on $\mathbf{\Delta}^n$. With this representation the multiplication and differential are given by the usual formulae. The multiplication is defined by $\Phi \wedge \Psi$ and extends linearly the product \begin{displaymath} (d b_{i_1}\wedge\ldots d b_{i_p})\wedge (d b_{j_1}\wedge\ldots d b_{j_q}) = (d b_{i_1}\wedge\ldots d b_{i_p}\wedge d b_{j_1}\wedge\ldots d b_{j_q}) \end{displaymath} on the generating forms. Now if $f$ is a differentiable function \begin{displaymath} d f = \sum_{i=1}^{n} \frac{\partial f}{\partial x^i}d x_i, \end{displaymath} so if \begin{displaymath} \Phi =\sum_{1\leq i_1\lt \ldots\lt i_p\leq n}\Phi_{i_1\ldots i_p}d b_{i_1}\wedge\ldots d b_{i_p}, \end{displaymath} then \begin{displaymath} d\Phi =\sum_{1\leq i_1\lt\ldots\lt i_p\leq n} d\Phi_{i_1\ldots i_p} \wedge d b_{i_1} \wedge \ldots d b_{i_p}, \end{displaymath} \hypertarget{Polynomial}{}\subsubsection*{{Polynomial differential forms}}\label{Polynomial} \begin{defn} \label{PolynomialDifferentialForms}\hypertarget{PolynomialDifferentialForms}{} For $n \in \mathbb{N}$ write \begin{displaymath} \Omega_{poly}^{\bullet}(\Delta^n) \;\coloneqq\; Sym^\bullet_{\mathbb{Q}} \langle t_0, \cdots, t_n, d t_0, \cdots, d t_n\rangle/\left(\sum t_i -1, \sum d t_i \right) \end{displaymath} for the [[quotient]] of the $\mathbb{Z}$-graded [[symmetric algebra]] over the [[rational numbers]] on $n+1$ generators $t_i$ in degree 0 and $n+1$ generators $d t_i$ of degree 1. In particular in degree 0 this are called the \emph{polynomial functions} \begin{displaymath} \Omega^0_{poly}(\Delta^n) \;=\; \mathbb{Q}[t_0, t_1, \cdots t_n]/\left( \underset{i}{\sum} t_i = 0 \right) \end{displaymath} due to the canonical inclusion \begin{displaymath} \Omega^0_{poly}(\Delta^n) \hookrightarrow C^\infty(\Delta^n_{smth}) \end{displaymath} into the [[smooth functions]] on the $n$-simplex according to def. \ref{SmoothDifferentialFormsOnSmoothnSimplex}, obtained by regarding the generator $t_i$ as the $i$th barycentric coordinate function. Observe that the [[tensor product]] of the polynomial differential forms over these polynomial functions with the [[smooth functions]] on the $n$-simplex, is canonically [[isomorphism|isomorphic]] to the space $\Omega^\bullet(\Delta^n_{smth})$ of smooth [[differential forms]], according to def. \ref{SmoothDifferentialFormsOnSmoothnSimplex}: \begin{displaymath} \Omega^\bullet(\Delta^n_{smth}) \simeq C^\infty(\Delta^n_{smth}) \otimes_{\Omega^0_{poly}(\Delta^n)} \Omega^\bullet_{poly}(\Delta^n) \end{displaymath} where moreover the generators $d t_i$ are identified with the de Rham differential of the $i$th barycentric coordinate functions. This defines a canonical inclusion \begin{displaymath} \Omega^\bullet_{poly}(\Delta^n) \hookrightarrow \Omega^\bullet(\Delta^n_{smth}) \end{displaymath} and there is uniquely the structure of a [[differential graded-commutative algebra]] on $\Omega^\bullet_{poly}(\Delta^n)$ that makes this a [[homomorphism]] of [[dg-algebras]]. This is the \emph{dg-algebra of polynomial differential forms}. For $f \colon [n_1] \to [n_1]$ a [[morphism]] of finite non-empty [[linear orders]], let \begin{displaymath} \Omega^\bullet_{poly}(f) \;\colon\; \Omega^\bullet_{poly}(\Delta^{n_2}) \to \Omega^\bullet_{poly}(\Delta^{n_1}) \end{displaymath} be the morphism of dg-algebras given on generators by \begin{displaymath} \Omega^\bullet_{poly}(f) : t_i \mapsto \sum_{f(j) = i} t_j \,. \end{displaymath} This yields a [[simplicial object|simplicial]] [[differential graded-commutative algebra]] \begin{displaymath} \Omega^\bullet_{poly}(\Delta^{(-)}) : \Delta^{op} \to cdgAlg_k \end{displaymath} which is a sub-simplicial object of that of smooth differential form \begin{displaymath} \Omega^\bullet_{poly}(\Delta^{(-)}) \hookrightarrow \Omega^\bullet(\Delta_{smth}^{(-)}) \,. \end{displaymath} \end{defn} \hypertarget{piecewise_polynomial_differential_forms}{}\subsubsection*{{Piecewise polynomial differential forms}}\label{piecewise_polynomial_differential_forms} By left [[Kan extension]] the functor of polynomial differential forms from def. \ref{PolynomialDifferentialForms} yields a functor on all [[simplicial sets]] \begin{displaymath} \Omega^\bullet_{poly} \colon sSet \longrightarrow cdgAlg_k^{op} \,. \end{displaymath} This is the [[left adjoint]] in a [[nerve and realization]] [[adjunction]] \begin{displaymath} (\Omega^\bullet_{poly} \dashv \mathcal{K}_{poly}) \;\colon\; (dgcAlg_{\mathbb{Q}, \geq 0})^{op} \underoverset {\underset{K_{poly}}{\longrightarrow}} {\overset{\Omega^\bullet_{poly}}{\longleftarrow}} {\bot} sSet \,. \end{displaymath} Composing with the [[singular simplicial complex]] functor \begin{displaymath} Sing \;\colon\; Top \longrightarrow sSet \end{displaymath} on [[topological spaces]], this yields a functor on topological spaces \begin{displaymath} \Omega^\bullet_{pwpoly} \;\colon\; Top \overset{Sing}{\longrightarrow} sSet \overset{\Omega^\bullet_{poly}}{\longrightarrow} (dgcAlg_{\mathbb{Q}, \geq 0})^{op} \end{displaymath} which we may think of as assigning ``piecewise polynomial'' differential forms. This is the starting point of the Sullivan approach to [[rational homotopy theory]]. See there for more \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} Let $k$ be a [[field]] of [[characteristic]] 0. Let $\Omega^\bullet_{poly} : sSet \to cdgAlg_k^{op}$ be the left [[Kan extension]] of $\Omega^\bullet_{poly} : \Delta \to cdgAlg_k^{op}$ from \hyperlink{Polynomial}{above}. \begin{defn} \label{}\hypertarget{}{} For $S \in sSet$, define a morphism of graded $k$-vector spaces \begin{displaymath} \int : \Omega^\bullet_{poly}(S) \to C^\bullet(S, k) \end{displaymath} from polynomial differential forms on simplices to [[cochains on simplicial sets]] by sending $\omega \in \Omega^n_{poly}(K)$ to the cochain that sends $\sigma \in K_n$ to \begin{displaymath} \int_\sigma f := \int_{\Delta^n} f_{max}(\sigma) d t_1 \wedge \cdots d t_n \,, \end{displaymath} where on the right we have the ordinary [[integral]] of the $1,\cdots,n$-component of the restriction of $f$ to $\sigma$. \end{defn} \begin{prop} \label{}\hypertarget{}{} The morphism $\int$ is a [[quasi-isomorphism]] of cochain complexes. \end{prop} This is (\hyperlink{BousfieldGugenheim}{Bousfield-Gugenheim, theorem 2.2, corollary 3.4}). The following is the central fact of the Sullivan approach to [[rational homotopy theory]]: \begin{prop} \label{}\hypertarget{}{} The functor $\Omega^\bullet_{poly}$ is the [[left adjoint]] of a [[Quillen adjunction]] \begin{displaymath} (\Omega^\bullet_{poly} \dashv R) \;\colon\; sSet \underoverset {\underset{\Omega^\bullet_{poly}}{\to}} {\overset{R}{\leftarrow}} {\bot} cdgAlg_k^{op} \end{displaymath} for the standard [[model structure on simplicial sets]] and the projective [[model structure on dg-algebras|model structure on commutative dg-algebras]]. \end{prop} This is shown in (\hyperlink{BousfieldGugenheim}{Bousfield-Gugenheim, section 8}). So in particular $\Omega^\bullet_{poly}$ sends cofibrations of simplicial sets to fibrations of dg-algebras. Hence for $i : \partial \Delta[k] \hookrightarrow \Delta[k]$ a boundary inclusion the corresponding restriction \begin{displaymath} i^* : \Omega^\bullet_{poly}(\Delta^k) \to \Omega^\bullet_{poly}(\partial \Delta^k) \end{displaymath} is degreewise surjective. \begin{prop} \label{RespectForProduct}\hypertarget{RespectForProduct}{} The functor $\Omega^\bullet_{poly}$ is a [[lax monoidal functor]] whose lax monoidal structure map \begin{displaymath} \nabla_{X,Y} : \Omega^\bullet_{poly}(X) \otimes \Omega^\bullet_{poly}(Y) \to \Omega^\bullet_{poly}(X \times Y) \end{displaymath} is a [[quasi-isomorphism]]. \end{prop} This is reviewed for instance in (\hyperlink{Hess}{Hess, page 12}). \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} Applications include \begin{itemize}% \item the [[Sullivan construction]] in [[rational homotopy theory]]; \item the [[sSet]]-[[enriched category|enrichment]] of the [[model structure on dg-algebras over an operad]]. \item higher [[Lie integration]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} An original reference is \begin{itemize}% \item [[Aldridge Bousfield]] and V. K. A. M. Gugenheim, \S{}1 and \S{}2 of: \emph{On PL De Rham Theory and Rational Homotopy Type} , Memoirs of the A. M. S., vol. 179, 1976. \end{itemize} A standard textbook is \begin{itemize}% \item [[Stephen Halperin]], \emph{Lecture Notes on Minimal Models}, Publications de l'U.E.R. Math\'e{}matiques Pures et Appliqu\'e{}es, Universit\'e{} des Sciences et techniques, Lille, Vol 3 (1981) Fasc.3. \end{itemize} This is based on \begin{itemize}% \item [[Dennis Sullivan]], \emph{Infinitesimal computations in topology}, Publications Math\'e{}matiques de l'IH\'E{}S, 47 (1977), p. 269-331 (\href{http://www.numdam.org/item/PMIHES_1977__47__269_0/}{numdam}) \end{itemize} A useful survey is in \begin{itemize}% \item [[Kathryn Hess]], \emph{Rational homotopy theory: a brief introduction} (\href{http://arxiv.org/abs/math.AT/0604626}{arXiv:math.AT/0604626}) \end{itemize} [[!redirects polynomial differential form]] [[!redirects polynomial differential forms]] [[!redirects piecewise polynomial differential form]] [[!redirects piecewise polynomial differential forms]] [[!redirects polynomial differential forms on the n-simplex]] [[!redirects polynomial differential forms on n-simplices]] [[!redirects smooth differential forms on simplices]] [[!redirects Sullivan differential form]] [[!redirects Sullivan differential forms]] \end{document}