\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{differential function complex} \begin{quote}% under construction \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differential_cohomology}{}\paragraph*{{Differential cohomology}}\label{differential_cohomology} [[!include differential cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{cocycles_with_values_in_graded_vector_spaces}{Cocycles with values in graded vector spaces}\dotfill \pageref*{cocycles_with_values_in_graded_vector_spaces} \linebreak \noindent\hyperlink{differential_functions}{Differential functions}\dotfill \pageref*{differential_functions} \linebreak \noindent\hyperlink{differential_function_complexes}{Differential function complexes}\dotfill \pageref*{differential_function_complexes} \linebreak \noindent\hyperlink{differential_cohomology_2}{Differential $E$-cohomology}\dotfill \pageref*{differential_cohomology_2} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{homotopy_groups}{Homotopy groups}\dotfill \pageref*{homotopy_groups} \linebreak \noindent\hyperlink{relation_to_differential_cohomology_in_cohesive_toposes}{Relation to differential cohomology in cohesive $(\infty,1)$-toposes}\dotfill \pageref*{relation_to_differential_cohomology_in_cohesive_toposes} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{line_bundles_with_connection}{Line bundles with connection}\dotfill \pageref*{line_bundles_with_connection} \linebreak \noindent\hyperlink{differential_kcocycles}{Differential K-cocycles}\dotfill \pageref*{differential_kcocycles} \linebreak \noindent\hyperlink{higher_filtration_degree}{Higher filtration degree}\dotfill \pageref*{higher_filtration_degree} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{differential function complex} (\hyperlink{HopkinsSinger}{HopkinsSinger}) is a [[Kan complex]] of [[cocycle]] s for \emph{generalized} [[differential cohomology]], hence for differential refinements of [[generalized (Eilenberg-Steenrod) cohomology]] theories: roughly, given a [[spectrum]] $E$ [[Brown representability|representing]] a given [[cohomology theory]], its \emph{differential function complex} over any given [[smooth manifold]] $U$ is the [[simplicial set]] whose $k$-[[simplices]] are triples consisting of \begin{itemize}% \item a [[continuous function]] $f : U \times \Delta^k \to E_{n}$; \item a smooth [[differential form]] $\omega$ on $U \times \Delta^k$ whose corresponding real cohomology class (under the [[de Rham theorem]]) is that of the pullback of the real cohomology classes of $E$ along $f$; \item an explicit [[coboundary]] in real cohomology exhibiting this fact. \end{itemize} (More precisely, in order for this construction to yield not just a single [[simplicial set]] (which will be a [[Kan complex]]) but a suitable [[spectrum]] object, there are conditons on the dependency of $\omega$ on the [[tangent vector]]s to the [[simplex]].) When applied to the [[Eilenberg-MacLane spectrum]] $K\mathbb{Z}$ this construction reproduces, on cohomology classes, [[ordinary differential cohomology]]. Applied to the [[classifying space]] $B U$ of [[topological K-theory]] it gives [[differential K-theory]]. See also at \emph{\href{differential+cohomology+diagram#HopkinsSingerCoefficients}{differential cohomology diagram --Hopkins-Singer coefficients}}. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \hypertarget{cocycles_with_values_in_graded_vector_spaces}{}\subsubsection*{{Cocycles with values in graded vector spaces}}\label{cocycles_with_values_in_graded_vector_spaces} For the present purposes it will be convenient to collect [[cocycle]]s of various degrees together to a single cocycle. For that purpose we make the following simple definition. \begin{defn} \label{}\hypertarget{}{} For $V = V^\bullet$ a [[graded vector space]] over the [[real number]]s set \begin{itemize}% \item for $E$ a [[topological space]]: \begin{displaymath} C^\bullet(E, V)^n := \oplus_{i + j = n} C^i(E, V^j) \end{displaymath} \item and so on \end{itemize} \end{defn} (\ldots{}) \hypertarget{differential_functions}{}\subsubsection*{{Differential functions}}\label{differential_functions} \begin{defn} \label{DifferentialFunctions}\hypertarget{DifferentialFunctions}{} For \begin{itemize}% \item $E$ a [[topological space]]; \item $\iota \in Z^n(E,\mathbb{R})$ a [[cocycle]] on $E$ for real-valued [[singular cohomology]] on $E$, \end{itemize} a \textbf{differential function} on a smooth [[manifold]] $U$ with values in $(E,\iota)$ is a triple $(c,h,\omega)$ with \begin{itemize}% \item $c : U \to E$ a continuous map; \item $\omega \in \Omega^n(S)$ a smooth [[differential form]] on $S$; \item $h \in C^{n-1}(U,\mathbb{R})$ a cochain in real cohomology on (the topological space underlying) $U$; \end{itemize} such that in the [[abelian group]] $Z^n(S,\mathbb{R})$ of singular cochains the equation \begin{displaymath} \omega = c^*\iota + \delta h \end{displaymath} holds, where \begin{itemize}% \item $\omega$ is here regarded as a singular cochain (that sends a chain to the integral of $\omega$ over it, as discussed at [[de Rham theorem]]), \item $\delta$ denotes the coboundary operator,(the [[Moore complex]] differential of the [[singular simplicial complex]]). \end{itemize} \end{defn} This is (\hyperlink{HopkinsSinger}{HopkinsSinger, def.4.1}). In words this is: a continuous map to the topological space together with a \emph{smooth} refinement of the pullback of the chosen singular cochain. \hypertarget{differential_function_complexes}{}\subsubsection*{{Differential function complexes}}\label{differential_function_complexes} \begin{defn} \label{DifferentialFunctionComplex}\hypertarget{DifferentialFunctionComplex}{} For \begin{itemize}% \item $E$ be a [[topological space]] and \item $\iota \in Z^n(E,\mathbb{R})$ a [[cocycle]] on $E$ for real-valued [[singular cohomology]] on $X$, \item $U$ a [[smooth manifold]], \end{itemize} the \textbf{differential function complex} \begin{displaymath} (E,\iota)^U \end{displaymath} of all differential functions $S \to (X,\iota)$ is the [[simplicial set]] whose $k$-[[simplices]] are differential functions, def, \ref{DifferentialFunctions} \begin{displaymath} U \times \Delta^k_{Top} \to (E,\iota) \,. \end{displaymath} \end{defn} For applications one needs certain sub-complex of this, filtered by the number of legs that $\omega$ has along the simplices. \begin{defn} \label{}\hypertarget{}{} For $s \in \mathbb{N}$ write \begin{itemize}% \item $filt_s \Omega^\bullet(U \times \Delta^k)$ for the sub-simplicial set of differential forms that vanish when evaluated on more than $s$ [[vector field]]s tangent to the [[simplex]]; \item $filt_s (X,\iota)^S \subset (X,\iota)^S$ for the sub-simplicial set of those differential functions whose differential form component is in $filt_s \Omega^\bullet(U \times \Delta^k)$. \end{itemize} \end{defn} This is (\hyperlink{HopkinsSinger}{HopkinsSinger, def. 4.5}). \begin{prop} \label{}\hypertarget{}{} The complex $filt_s (E,\iota)^U$ is (up to [[weak homotopy equivalence|equivalence]], of course) the [[homotopy pullback]] \begin{displaymath} \itexarray{ filt_s (E,\iota)^U &\to& filt_s \Omega^n_{cl}(U \times \Delta^\bullet, \mathcal{V}) \\ \downarrow && \downarrow \\ Sing E^U &\to& Z^\bullet(U \times \Delta^\bullet, \mathcal{V}) } \end{displaymath} in [[sSet]] (regarded as equipped with its standard [[model structure on simplicial sets]]). \end{prop} Here $E^U$ is the [[internal hom]] in [[Top]] and $Sing(-)$ denotes the [[singular simplicial complex]]. The following proposition gives the [[simplicial homotopy groups]] of these differential function complexes in dependence of the parameter $s$. \begin{prop} \label{HomotopyGroupsOfDiffFunctionComplex}\hypertarget{HomotopyGroupsOfDiffFunctionComplex}{} We have generally \begin{displaymath} \pi_k Z(S \times \Delta^\bullet_{Diff}, \mathcal{V}) = H^{n-m}(S; \mathcal{V}) \end{displaymath} (for instance by the [[Dold-Kan correspondence]]). The [[simplicial homotopy group]]s of $filt_s \Omega^n_{cl}(S \times \Delta^\bullet_{Diff})$ are \begin{displaymath} \pi_k filt_s \Omega^n_{cl}(S \times \Delta^\bullet_{Diff}) = \left\{ \itexarray{ H_{dR}^{n-k}(S, \mathcal{V}) & | k \lt s \\ \Omega_{cl}(S; \mathcal{V})^{n-s} & | k = s \\ 0 & | k \gt s } \right\} \,. \end{displaymath} This implies [[isomorphism]]s \begin{displaymath} \pi_k filt_s(X; \iota)^S \stackrel{\simeq}{\to} \left\{ \itexarray{ \pi_k X^S & | k \lt s \\ H^{n-k-1}(S; \mathcal{V})/ \pi_{k+1} X^S | k \gt s } \right. \,. \end{displaymath} \end{prop} This appears as \hyperlink{HopkinsSinger}{HopkinsSinger, p. 36 and corollary D15}. \hypertarget{differential_cohomology_2}{}\subsubsection*{{Differential $E$-cohomology}}\label{differential_cohomology_2} Let $E_\bullet$ be an [[Omega-spectrum]]. Let $\iota_\bullet$ be the canonical [[Chern character]] class (\ldots{}). \begin{prop} \label{}\hypertarget{}{} For $S$ a [[smooth manifold]], and $s \in \mathbb{N}$, the sequence of differential function complexes, def. \ref{DifferentialFunctionComplex}, \begin{displaymath} filt_{s + n}(E_n; \iota_n)^S \stackrel{\simeq}{\to} \Omega filt_{s + (n + 1)}(E_{n+1}; \iota_{n+1})^S \end{displaymath} forms an [[Omega-spectrum]]. This is the \textbf{differential function spectrum} for $E$, $S$, $s$. \end{prop} This is (HopkinsSinger, section 4.6). \begin{defn} \label{}\hypertarget{}{} The \textbf{differential $E$-cohomology group} of the smooth manifold $S$ in degree $n$ is \begin{displaymath} H_{diff}^n(S,E) := \pi_0 filt_0(E_n \iota_n)^S \end{displaymath} \end{defn} This is (\hyperlink{HopkinsSinger}{HopkinsSinger, def. 4.34}). \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{homotopy_groups}{}\subsubsection*{{Homotopy groups}}\label{homotopy_groups} For reference, we repeat from above the central statements about the [[homotopy type]]s of the differential function complexes, def. \ref{DifferentialFunctionComplex}. \begin{prop} \label{LoopObjectsOfDiffFunctionComplexes}\hypertarget{LoopObjectsOfDiffFunctionComplexes}{} For $E$ an [[Omega-spectrum]], $S$ a [[smooth manifold]], we have for all $s,n \in \mathbb{N}$, a [[weak homotopy equivalence]] \begin{displaymath} \Omega filt_{s+1}(E_{n}; \iota_{n})^S \stackrel{\simeq}{\to} filt_{s}(E_{n-1}; \iota_{n-1})^S \,, \end{displaymath} identifying the [[loop space object]] (at the canonical base point) of the differential function complex of $E_{n}$ at filtration level $s+1$ with that differential function complex of $E_{n-1}$ at filtration level $s$. \end{prop} \hypertarget{relation_to_differential_cohomology_in_cohesive_toposes}{}\subsubsection*{{Relation to differential cohomology in cohesive $(\infty,1)$-toposes}}\label{relation_to_differential_cohomology_in_cohesive_toposes} The following is a simple corollary or slight rephrasing of some of the above constructions, which may serve to show how differential function complexes present differential cohomology in the [[cohesive (∞,1)-topos]] of [[smooth ∞-groupoid]]s. \begin{prop} \label{}\hypertarget{}{} For $E_\bullet$ a spectrum as above,\newline we have an [[(∞,1)-pullback]] square \begin{displaymath} \itexarray{ filt_0 (E_n; \iota_n)^{(-)} &\to& \prod_i \Omega^{n_i}_{cl}(-) \\ \downarrow && \downarrow \\ Disc E_n & \stackrel{}{\to} & \prod_i \mathbf{B}^{n_i} \mathbb{R}_{disc} } \,. \end{displaymath} \end{prop} \begin{proof} By prop. \ref{HomotopyGroupsOfDiffFunctionComplex} we have that \begin{itemize}% \item $filt_\infty (E; \iota_n)^S \simeq Sing X^S$; \item $filt_0 \Omega_{cl}(S \times \Delta^\bullet) \simeq \Omega_{cl}(S)$. \end{itemize} The statement then follows with the [[pasting law]] for [[homotopy pullback]]s \begin{displaymath} \itexarray{ filt_0 (E_n; \iota_n)^S &\to& \Omega^n_{cl}(S; \mathcal{V}) \\ \downarrow && \downarrow \\ filt_\infty (E_n; \iota_n)^S &\to& filt_\infty \Omega_{cl}(S \times \Delta^\bullet; \mathcal{V}) \\ \downarrow^{\mathrlap{\simeq}} && \downarrow^{\mathrlap{\simeq}} \\ Sing X^S &\to& Z(S \times \Delta^\bullet; \mathcal{V}) } \,. \end{displaymath} (\ldots{}) \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item For $E = H \mathbb{Z}$ the [[Eilenberg-MacLane spectrum]], $H_{diff}^n(-,E)$ is [[ordinary differential cohomology]]. \item For $E = K U$ the [[K-theory spectrum]], $H_{diff}^n(-,E)$ is [[differential K-theory]]. \item For $E = M O, M U$ the [[Thom spectrum]], $H_{diff}^n(-,E)$ is [[differential cobordism cohomology]]; \item For $E = tmf$ the [[tmf]] spectrum, $H_{diff}^n(-,E)$ is [[differential cohomology]]; \end{itemize} \hypertarget{line_bundles_with_connection}{}\subsubsection*{{Line bundles with connection}}\label{line_bundles_with_connection} Let $X = \mathcal{B} U(1) \simeq K(\mathbb{Z},2)$ be the [[Eilenberg-MacLane space]] that is the [[classifying space]] for $U(1)$-[[principal bundle]]s. It carries the canonical [[cocycle]] $\iota := Id : \mathcal{B}U(1) \to \mathcal{B}U(1) \simeq K(\mathbb{Z},2)$ representing in $H^2(X,\mathbb{Z})$ the class of the universal complex [[line bundle]] $L \to X$ on $X$. Accordingly, for $c : S\to \mathcal{B}U(1)$ a continuous map, we have the corresponding line bundle $c^* L$ on $S$. One checks (\ldots{}details\ldots{}Example 2.7 in HopSin) that a refinement of $c$ to a differential function $(c,\omega,h)$ corresponds to equipping $c^* L$ with a [[connection on a bundle|smooth connection]]. Now consider $((c,\omega,h) \to (c',\omega', h')) \in filt_0 (\mathcal{B}U(1),Id)^S$ a morphism between two such $(\mathcal{B}U(1),Id)$-differential functions. By definition this is now a $U(1)$-principal bundle $\hat L$ with connection on $S \times \Delta^i_{Diff}$, whose curvature form $\hat \omega \in \Omega^2(S \times \Delta^1_{Diff})$ is of the form $g \cdot \tilde \omega$, where $\tilde \omega$ is a 2-form on $S$ and $g$ is a smooth function on $\Delta^1_{Diff}$, both pulled back to $S \times \Delta^1_{Diff}$ and multiplied there. But since $\hat \omega$ is necessarily \emph{closed} it follows with $d (g \wedge \tilde \omega) = d t \frac{\partial g}{\partial t} \wedge \tilde \omega + g \wedge d_{S} \tilde \omega$ that $g$ is actually constant. This means that that the parallel transoport of the connection $\hat \nabla$ on $S \times \Delta^1_{Diff}$ induces a insomorphism between the two line bundles on $S$ over the endpoints of $S \times \Delta^1_{Diff}$ that respects the connections. \ldots{} \hypertarget{differential_kcocycles}{}\subsubsection*{{Differential K-cocycles}}\label{differential_kcocycles} (\ldots{}) \hypertarget{higher_filtration_degree}{}\subsubsection*{{Higher filtration degree}}\label{higher_filtration_degree} \begin{example} \label{HigherFilteringOfOrdinaryDiffCoh}\hypertarget{HigherFilteringOfOrdinaryDiffCoh}{} For $E = H \mathbb{Z}$ the [[Eilenberg-MacLane spectrum]], prop. \ref{LoopObjectsOfDiffFunctionComplexes} states that $filt_{1}(H \mathbb{Z}^{n+1}; \iota_{n})^S$ is an [[n-groupoid]] such that the [[automorphism]]s of the 0-object form [[ordinary differential cohomology]] in degree $n$. \begin{displaymath} \Omega filt_{1}(H \mathbb{Z}^{n+1}; \iota_{n})^S \simeq \mathbf{H}_{diff}^n(S) \,. \end{displaymath} \end{example} \begin{remark} \label{}\hypertarget{}{} Example \ref{HigherFilteringOfOrdinaryDiffCoh} for $n = 4$ plays a central role in the description of [[T-duality]] by [[twisted differential K-theory]] in (\hyperlink{KahleValentino}{KahleValentino}). \end{remark} \hypertarget{references}{}\subsection*{{References}}\label{references} Differential function complexes were introduced and studied in \begin{itemize}% \item [[Mike Hopkins]], I. Singer, \emph{[[Quadratic Functions in Geometry, Topology,and M-Theory]]} \end{itemize} For further references see [[differential cohomology]]. \begin{itemize}% \item [[Alexander Kahle]], [[Alessandro Valentino]], \emph{[[T-Duality and Differential K-Theory]]} \end{itemize} [[!redirects differential function complexes]] \end{document}