\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{differential graded Hopf algebra} \begin{quote}% under construction \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{graded_hopf_algebras}{Graded Hopf algebras}\dotfill \pageref*{graded_hopf_algebras} \linebreak \noindent\hyperlink{derivations_on_hopf_algebras}{Derivations on Hopf algebras}\dotfill \pageref*{derivations_on_hopf_algebras} \linebreak \noindent\hyperlink{shuffle_product_on_}{Shuffle product on $T(V)$}\dotfill \pageref*{shuffle_product_on_} \linebreak \noindent\hyperlink{gradedcommutative_hopf_algebra_structure_on_}{Graded-commutative Hopf algebra structure on $T(V)$}\dotfill \pageref*{gradedcommutative_hopf_algebra_structure_on_} \linebreak \noindent\hyperlink{gradedcocommutative_hopf_algebra_structure_on_}{Graded-cocommutative Hopf algebra structure on $T(V)$}\dotfill \pageref*{gradedcocommutative_hopf_algebra_structure_on_} \linebreak \noindent\hyperlink{the_enveloping_algebra_of_a_lie_algebra_}{The enveloping algebra of a Lie algebra, $U(L)$.}\dotfill \pageref*{the_enveloping_algebra_of_a_lie_algebra_} \linebreak \noindent\hyperlink{the_lie_algebra_of_primitives_}{The Lie algebra of primitives, $P$}\dotfill \pageref*{the_lie_algebra_of_primitives_} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \hypertarget{graded_hopf_algebras}{}\subsubsection*{{Graded Hopf algebras}}\label{graded_hopf_algebras} A \emph{$\mathbb{Z}$-graded Hopf algebra} (pre-gha) is a $\mathbb{Z}$-graded vector space, which, for that grading, is both a $\mathbb{Z}$-graded algebra, $(A,\mu)$, with unity, $\eta : K \to A$, and a $\mathbb{Z}$-graded coalgebra $(A, \Delta, \varepsilon)$ such that: \begin{itemize}% \item $\eta : K \to A$ is a morphism of $\mathbb{Z}$-graded coalgebras; \item $\varepsilon : A \to K$ is a morphism of $\mathbb{Z}$-graded algebras; \item $\mu : A \otimes A \to A$ is a morphism of $\mathbb{Z}$-graded coalgebras \end{itemize} \textbf{Remark} We can replace the third condition by: \begin{itemize}% \item $\Delta : A \to A \otimes A$ is a morphism of $\mathbb{Z}$-graded algebras. \end{itemize} Of course, wherever possible, we will abbreviate $(A,\Delta,\mu,\epsilon,\eta)$ to $A$. A [[homomorphism]] of pre-ghas is a linear map of degree zero compatible with both the algebra and coalgebra structures. We may write $pre GHA$ for the resulting category. If $A$ and $A'$ are two pre-ghas, $A\otimes A'$ is a pre-gha for the algebra and coalgebra structures already defined. \hypertarget{derivations_on_hopf_algebras}{}\subsubsection*{{Derivations on Hopf algebras}}\label{derivations_on_hopf_algebras} Let $A$ be a pre-gha. A \emph{Hopf algebra derivation} of $A$ of degree $p\in \mathbb{Z}$ is a linear mapping $\theta \in Hom_p(A,A)$, defining both an algebra and a coalgebra derivation. A differential $\partial$ of pre-ghas is a Hopf algebra derivation of degree -1 such that $\partial\circ \partial = 0$. The pair $(A,\partial)$ is called a \emph{differential $\mathbb{Z}$-graded Hopf algebra} (pre-dgha). Its homology $H(A,\partial)$ is also a pre-gha. A morphism of pre-dghas is a morphism, at the same time, of pre-ghas and pre-dgvs. This gives a category $pre DGHA$. A pre-gha $(A,\Delta,\mu,\epsilon,\eta)$ is \emph{commutative} if $(A,\mu)$ is commutative and is \emph{cocommutative} if $(A,\Delta,\varepsilon)$ is cocommutative. This gives categories $pre CDGHA$ and $pre CoDGHA$ respectively. A \emph{cocommutative} (resp. \emph{commutative}) \emph{dgha} is an object of $pre CoDGHA$ (resp. $pre CDGHA$, which has a lower (resp. upper) grading. A cocommutative (resp. commutative) dgha $A$ is \emph{$n$-connected} if $\bar{A}_p = 0$ (resp $\bar{A}^p = 0$) for $p\leq n$. \hypertarget{shuffle_product_on_}{}\subsubsection*{{Shuffle product on $T(V)$}}\label{shuffle_product_on_} Let $V$ be a pre-gvs. The gvs $T(V)$ is a pre-cga for the [[shuffle]] product defined by \begin{displaymath} (v_1\otimes \ldots \otimes v_p)\star (v_{p+1}\otimes\ldots \otimes v_n) = \sum_\sigma \varepsilon(\sigma)v_{\sigma^{-1}(1)}\otimes\ldots \otimes v_{\sigma^{-1}(n)}, \end{displaymath} where the sum is over all $(p,n-p)$ [[shuffles]], $\varepsilon(\sigma)$ is the Koszul sign of $\sigma$ and the elements $v_i$ of $V$ are all homogeneous. \hypertarget{gradedcommutative_hopf_algebra_structure_on_}{}\subsubsection*{{Graded-commutative Hopf algebra structure on $T(V)$}}\label{gradedcommutative_hopf_algebra_structure_on_} The underlying algebra structure is $T(V)$ with the shuffle product. The reduced diagonal is given by \begin{displaymath} \bar{\Delta}(v_1\otimes \ldots \otimes v_n) = \sum_{p=1}^{n-1} (v_1\otimes \ldots \otimes v_p)\otimes(v_{p+1}\otimes \ldots \otimes v_n). \end{displaymath} \hypertarget{gradedcocommutative_hopf_algebra_structure_on_}{}\subsubsection*{{Graded-cocommutative Hopf algebra structure on $T(V)$}}\label{gradedcocommutative_hopf_algebra_structure_on_} The underlying algebra structure this time is $T(V)$ with the usual product \begin{displaymath} (v_1\otimes \ldots \otimes v_p)\cdot(v_{p+1}\otimes \ldots \otimes v_n) = v_1\otimes \ldots \otimes v_p\otimes v_{p+1}\otimes \ldots \otimes v_n, \end{displaymath} but with the reduced diagonal given by \begin{displaymath} \bar{\Delta}(v_1\otimes \ldots \otimes v_n) = \sum_{p=1}^{n-1}\sum_\sigma \varepsilon(\sigma) (v_{\sigma(1)}\otimes \ldots \otimes v_{\sigma(p)})\otimes(v_{{\sigma(p+1)}}\otimes \ldots \otimes v_{\sigma(n)}), \end{displaymath} where the sum is over all $p$ and all $(p,n-p)$-shuffles and, as usual, $\varepsilon(\sigma)$ is the Koszul sign. The diagonal $\Delta$ is thus defined by the conditions \begin{itemize}% \item $\Delta v = v\otimes 1 + 1\otimes v$ if $v \in V$; \item $\Delta$ is a morphism of $\mathbb{Z}$-graded algebras. \end{itemize} A commutative and cocommutative $\mathbb{Z}$-graded Hopf algebra structure on $\bigwedge V$ is obtained by using the algebra and coalgebra structures defined in [[differential graded algebra]] and [[differential graded coalgebra]]. respectively. \hypertarget{the_enveloping_algebra_of_a_lie_algebra_}{}\subsubsection*{{The enveloping algebra of a Lie algebra, $U(L)$.}}\label{the_enveloping_algebra_of_a_lie_algebra_} Let $L$ be a pre-gla, $U(L)$, is the quotient algebra of the tensor algebra $T(L)$ by the two sided ideal generated by the elements \begin{displaymath} x\otimes y - (-1)^{|y||x|}y\otimes x - [x,y], \quad x,y,\in L. \end{displaymath} The diagonal $\Delta : L \to L\times L$, with $\Delta(x) = (x,x)$ defines a homomorphism of pre-gas, \begin{displaymath} U(\Delta) : U(L)\to U(L\times L) \cong U(L)\otimes U(L), \end{displaymath} which makes $U(L)$ a pre-gha which is cocommutative and conilpotent. If $L$ is a free Lie algebra on $V$, then the enveloping algebra is the tensor algebra: $U\mathbb{L}(V) \cong T(V)$. Let $(L,\partial)$ be a pre-dgla, the differential $\partial$ extends to an algebra differential on $T(L)$. With the quotient differential, $U(L)$ becomes a cocommutative pre-dgha, which will be denoted $U(L,\partial)$. The differential $\partial$ determines a differential, also denoted $\partial$, on the cocommutative pre-gca $\bigwedge' L$, (for which gca see [[differential graded coalgebra]]). It satisfies: \begin{displaymath} \bigwedge' H(L,\partial) \cong H(\bigwedge' L,\partial). \end{displaymath} Let $i : L \to U(L)$ be the linear mapping $L\to T(L) \to U(L)$, then define $e: \bigwedge' L \to U(L)$ by \begin{displaymath} e(x_1\wedge \ldots x_n) = \frac{1}{n!}\sum_\sigma \varepsilon(\sigma)i(x_{\sigma(1)})\ldots i(x_{\sigma(n)}), \end{displaymath} where the sum is over all permutations and $\varepsilon(\sigma)$ is the Koszul sign. \begin{theorem} \label{}\hypertarget{}{} (Poincar\'e{}-Birkhoff-Witt)(cf. \textbf{Quillen}) The mapping $e$ is an isomorphism of pre-dgcas. \end{theorem} \begin{corollary} \label{}\hypertarget{}{} $i : L \to U(L)$ defines an isomorphism between $L$ and the space of primitives of $U(L)$. \end{corollary} \begin{corollary} \label{}\hypertarget{}{} The natural map $UH(L,\partial)\to H(U(L,\partial)$ is an isomorphism of cocommutative pre-ghas. \end{corollary} \hypertarget{the_lie_algebra_of_primitives_}{}\subsubsection*{{The Lie algebra of primitives, $P$}}\label{the_lie_algebra_of_primitives_} Let $(A,\partial)$ be a cocommutative pre-dgha. The vector space $P(A)$ of primitive elements (for the coalgebra structure, cf. [[differential graded coalgebra]]), is not stable under the multiplication, however the commutator $[\alpha,\beta]$ of two elements of $P(A)$ is again in $P(A)$. This defines a pre-gla structure on $P(A)$ and we can put the induced differential on it to obtain $P(A,\partial)$. The inclusion $P(A)\to A$ extends to a morphism of cocommutative pre-dghas $\sigma: UP(A)\to A.$ \begin{theorem} \label{}\hypertarget{}{} If $A$ is conilpotent, $\sigma$ is an isomorphism. \end{theorem} The above theorem and earlier corollary show that $U$ and $P$ are inverse equivalences between the category, $pre DGLA$ and that of cocommutative, conilpotent pre-dghas. \textbf{Remark} The enveloping algebra of a free Lie algebra $\mathbb{L}(V)$ coincides with the tensor algebra, $T(V)$. It is conilpotent from which one gets $PT(V) = \mathbb{L}(V)$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Hopf algebra]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item D. Tanr\'e{}, Homotopie rationnelle: Mod\`e{}les de Chen, Quillen, Sullivan, Lecture Notes in Maths No. 1025, Springer, 1983. \item [[Daniel Quillen]], \emph{Rational Homotopy Theory}, Ann. of Math., (2) 90 (1969), 205-295. \end{itemize} Discussion of [[bar-cobar construction]] for dg-Hopf algebras: \begin{itemize}% \item [[Benoit Fresse]], \emph{The universal Hopf operads of the bar construction} (\href{https://arxiv.org/abs/math/0701245}{arXiv:math/0701245}) \item [[Murray Gerstenhaber]], [[Alexander Voronov]], Section 3.2 of: \emph{Homotopy G-algebras and moduli space operad}, Internat. Math. Research Notices (1995) 141-153 (\href{https://arxiv.org/abs/hep-th/9409063}{arXiv:hep-th/9409063}) \item Justin Young, \emph{Brace Bar-Cobar Duality} (\href{https://arxiv.org/abs/1309.2820}{arXiv:1309.2820}) \end{itemize} [[!redirects differential graded Hopf algebras]] [[!redirects dg-Hopf algebra]] [[!redirects dg-Hopf algebras]] \end{document}