\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{differential graded algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differentialgraded_objects}{}\paragraph*{{Differential-graded objects}}\label{differentialgraded_objects} [[!include differential graded objects - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{abstract_definition}{Abstract definition}\dotfill \pageref*{abstract_definition} \linebreak \noindent\hyperlink{detailed_component_definition}{Detailed component definition}\dotfill \pageref*{detailed_component_definition} \linebreak \noindent\hyperlink{pregraded_algebras}{Pre-graded algebras}\dotfill \pageref*{pregraded_algebras} \linebreak \noindent\hyperlink{tensor_product}{Tensor product}\dotfill \pageref*{tensor_product} \linebreak \noindent\hyperlink{derivations}{Derivations}\dotfill \pageref*{derivations} \linebreak \noindent\hyperlink{nb}{N.B.}\dotfill \pageref*{nb} \linebreak \noindent\hyperlink{predgas}{Pre-DGAs}\dotfill \pageref*{predgas} \linebreak \noindent\hyperlink{commutative_graded_algebras_cga}{Commutative graded algebras (CGA)}\dotfill \pageref*{commutative_graded_algebras_cga} \linebreak \noindent\hyperlink{cdgas}{CDGAs}\dotfill \pageref*{cdgas} \linebreak \noindent\hyperlink{connectivity}{$n$-connectivity}\dotfill \pageref*{connectivity} \linebreak \noindent\hyperlink{filtrations}{Filtrations}\dotfill \pageref*{filtrations} \linebreak \noindent\hyperlink{example_word_length_filtration}{Example: Word length filtration.}\dotfill \pageref*{example_word_length_filtration} \linebreak \noindent\hyperlink{free_gas__the_tensor_algebra}{Free GAs: $T(V)$, the tensor algebra}\dotfill \pageref*{free_gas__the_tensor_algebra} \linebreak \noindent\hyperlink{free_cgas_}{Free CGAs: $\bigwedge V$}\dotfill \pageref*{free_cgas_} \linebreak \noindent\hyperlink{word_length_filtrations_on__and_}{Word length filtrations on $\bigwedge V$ and $T(V)$.}\dotfill \pageref*{word_length_filtrations_on__and_} \linebreak \noindent\hyperlink{sum_and_product_of_cdgas}{Sum and Product of CDGAs.}\dotfill \pageref*{sum_and_product_of_cdgas} \linebreak \noindent\hyperlink{koszul_convention}{Koszul convention}\dotfill \pageref*{koszul_convention} \linebreak \noindent\hyperlink{terminology}{Terminology}\dotfill \pageref*{terminology} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{model_category_structure}{Model category structure}\dotfill \pageref*{model_category_structure} \linebreak \noindent\hyperlink{cosimplicial_algebras}{Cosimplicial algebras}\dotfill \pageref*{cosimplicial_algebras} \linebreak \noindent\hyperlink{dgcoalgebra}{dg-coalgebra}\dotfill \pageref*{dgcoalgebra} \linebreak \noindent\hyperlink{homological_smoothness}{Homological smoothness}\dotfill \pageref*{homological_smoothness} \linebreak \noindent\hyperlink{formal_dgalgebra}{Formal dg-algebra}\dotfill \pageref*{formal_dgalgebra} \linebreak \noindent\hyperlink{curved_dgalgebra}{Curved dg-algebra}\dotfill \pageref*{curved_dgalgebra} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{abstract_definition}{}\subsubsection*{{Abstract definition}}\label{abstract_definition} A \textbf{dg-algebra}, or \textbf{[[differential graded algebra]]}, is equivalently \begin{enumerate}% \item An [[associative algebra]] $A$ which is in addition [[graded algebra]] and a [[differential algebra]] in a compatible way (with the [[differential]] [[derivation]] being of degree $\pm$ 1); \item a [[monoid]] in the [[symmetric monoidal category]] of (possibly unbounded) [[chain complexes]] or [[cochain complex]]es with its standard structure of a [[monoidal category]] by the [[tensor product of chain complexes]]; \end{enumerate} For the case of chain complexes we also speak of \textbf{chain algebras}. For the case of cochain complexes we also speak of \textbf{cochain algebras}. Recall \begin{itemize}% \item that the standard tensor product on (co)chain complexes is given by \begin{displaymath} (A\otimes B)_n = \sum_{i+j=n} A_i\otimes B_j, \end{displaymath} with the differential $d_{A\otimes B} = d_A\otimes B + A\otimes d_B$. \item that a [[monoid]] in a [[monoidal category]] $C$ is an object $A$ in $C$ together with a morphism \begin{displaymath} \cdot : A \otimes A \to A \end{displaymath} that is unital and associative in the obvious sense. \end{itemize} This implies that a dg-algebra is, more concretely, a graded algebra $A$ equipped with a linear map $d : A \to A$ with the property that \begin{itemize}% \item $d\circ d = 0$ \item for $a \in A$ homogeneous of degree $k$, the element $d a$ is of degree $k+1$ (for monoids in cochain complexes) or of degree $k-1$ (for monoids in chain complexes) \item for all $a,b \in A$ with $a$ homogeneous of degree k the \textbf{graded Leibniz rule} holds $d (a \cdot b) = (d a) \cdot b + (-1)^k a \cdot (d b)$. \end{itemize} \hypertarget{detailed_component_definition}{}\subsubsection*{{Detailed component definition}}\label{detailed_component_definition} \hypertarget{pregraded_algebras}{}\paragraph*{{Pre-graded algebras}}\label{pregraded_algebras} A \emph{pre-graded algebra- (pre-ga) or $\mathbb{Z}$-graded algebra} is a pre-gvs, $A$, together with an algebra multiplication satisfying $A_p.A_q \subseteq A_{p+q}$ for any $p,q$. The relevant morphisms are pre-gvs morphisms which respect the multiplication. This gives a category $pre GA$. An \emph{augmentation} of a pre-ga, $A$, is a homomorphism $\varepsilon : A \to k$. The \emph{augmentation ideal} of $(A,\varepsilon)$ is $ker \varepsilon$ and will also be denoted $\bar{A}$. The pair $(A,\varepsilon)$ is called an \emph{augmented pre-ga}. A morphism $f:(A,\varepsilon)\to (A',\varepsilon')$ of augmented pre-gas is a homomorphism $f : A \to A'$ (thus of degree zero) such that $\varepsilon = \varepsilon ' f$. The resulting category will be written $pre \varepsilon GA$. \hypertarget{tensor_product}{}\paragraph*{{Tensor product}}\label{tensor_product} If $A$, $A'$ are two pre-gas, then $A\otimes A'$ is a pre-ga with \begin{displaymath} (a\otimes a')(b\otimes b') = (-1)^{|a' | |b|} a b \otimes a' b' \end{displaymath} for homogeneous $a,b \in A$, $a', b' \in A'$. If $\varepsilon, \varepsilon$ are augmentations of $A$ and $A'$ respectively, then $\varepsilon\otimes \varepsilon'$ is an augmentation of $A\otimes A'$. \hypertarget{derivations}{}\paragraph*{{Derivations}}\label{derivations} Let $A$ be a pre-ga. An \emph{(algebra) derivation} of degree $p\in \mathbb{Z}$ is a linear map $\theta \in Hom_p(A,A)$ such that \begin{displaymath} \theta(ab) = \theta(a)b + (-1)^{p|a|}a\theta(b) \end{displaymath} for homogeneous $a,b \in A$. A derivation $\theta$ of an augmented algebra, $(A, \varepsilon)$, is an algebra derivation which, in addition, satisfies $\varepsilon \theta = 0$. Let $Der_p(A)$ be the vector space of derivations of degree $p$ of $A$, then $Der(A) = \bigoplus_p Der_p(A)$ is a pre-gvs. \hypertarget{nb}{}\paragraph*{{N.B.}}\label{nb} In the case of upper gradings, an element of $Der_p(A)$ sends $A^n$ into $A^{n-p}$. \hypertarget{predgas}{}\paragraph*{{Pre-DGAs}}\label{predgas} A \emph{differential} $\partial$ on an (augmented) pre-ga is a derivation of the (augmented) algebra of degree -1 such that $\partial\circ\partial = 0$. The pair $(A,\partial)$ is called a \emph{pre-differential graded algebra} (pre-dga). If $A$ is augmented, then $(A,\partial)$ will be called an \emph{augmented pre-dga} $pre \varepsilon dga$. If $(A,\partial)$ and $(A',\partial')$ are pre-dgas, then $(A,\partial)\otimes (A',\partial')$, with the conventions already noted, is one as well. A morphism of pre-dgas (or pre-$\varepsilon$-dgas) is a morphism which is both of pre-gdvs and of pre-gas (with $\varepsilon$ as well if used). This gives categories $pre DGA$ and $pre \varepsilon DGA$. \hypertarget{commutative_graded_algebras_cga}{}\paragraph*{{Commutative graded algebras (CGA)}}\label{commutative_graded_algebras_cga} A pre-ga $A$ is said to be \emph{[[graded commutative algebra|graded commutative]]} if $ab = (-1)^{|a||b|}ba$ for each pair, $a, b$, of elements of $A$ of homogeneous degree. Commutativity is preserved by tensor product. We get obvious full subcategories $pre CDGA$ and $pre \varepsilon CDGA$ corresponding to the case with differentials. \hypertarget{cdgas}{}\paragraph*{{CDGAs}}\label{cdgas} A cdga is a \textbf{negatively} graded pre-cdga (in upper grading), $A= \bigoplus_{p\geq 0} A^p.$ There is an augmented variant, of course. These definitions give categories $CDGA$, etc. See at \emph{[[differential graded-commutative algebra]]}. \hypertarget{connectivity}{}\paragraph*{{$n$-connectivity}}\label{connectivity} An $\varepsilon$cdga $(A,d)$ is \emph{$n$-connected} (resp. \emph{cohomologically $n$-connected} if $\bar{A}^p = 0$ for $p\leq n$, (resp. $\overline{H(A,d)}^p = 0$ for $p\leq n$). This gives subcategories $CDGA^n$ and $CDGA^{c n}$. \hypertarget{filtrations}{}\paragraph*{{Filtrations}}\label{filtrations} A filtration on a pre-ga, $A$, is a filtration on $A$, so that $F_p A \subseteq F_{p+1}A$, $F_p A.F_n A \subseteq F_{p+n}A$ (and, if $A$ is differential, also $\partial F_p A \subseteq F_p A$). \hypertarget{example_word_length_filtration}{}\paragraph*{{Example: Word length filtration.}}\label{example_word_length_filtration} Let $A$ be an augmented pre-ga and denote by \begin{displaymath} \bar{\mu}^p : \bigotimes^{p+1}\bar{A} \to \bar{A}, \end{displaymath} the iterated multiplication. The \textbf{decreasing word length filtration}, $F^p A$ is given by: \begin{displaymath} F^0 A = A, \quad F^p A = Im\bar{\mu}^{(p-1)} if p\geq 1. \end{displaymath} $Q(A) = \bar{A}/Im\bar{\mu}$ is the \emph{space of indecomposables} of A. If $(A,\partial)$ is an augmented pre-dga, $F^p A$ is stable under $\partial$ and we get $Q(\partial)$ is a differential on $Q(A)$ and hence we get a functor $Q: pre \varepsilon DGA\to pre DGVS.$ \hypertarget{free_gas__the_tensor_algebra}{}\paragraph*{{Free GAs: $T(V)$, the tensor algebra}}\label{free_gas__the_tensor_algebra} Given a pre-gvs, $V$, the tensor algebra generated by $V$ is given by $T(V) = \bigotimes_{n\geq 0}V^{\otimes n}$. The augmentation sends $V$ to 0. $V^{\otimes n}$ is given the tensor product grading, and the multiplication is given by the tensor product. \hypertarget{lemma_classical_freeness_of___is_a_left_adjoint}{}\paragraph*{{Lemma (classical: freeness of $T(V)$, $T$ is a left adjoint)}}\label{lemma_classical_freeness_of___is_a_left_adjoint} If $A$ is a pre-ga and $f: V\to A$, a morphism to the underlying pre-gvs of $A$, there is a unique extension $\hat{f} :T(V)\to A$, which is a morphism of pre-gvs. \hypertarget{free_cgas_}{}\paragraph*{{Free CGAs: $\bigwedge V$}}\label{free_cgas_} This is the tensor product of the exterior algebra on the odd elements and the symmetric algebra on the even ones: \begin{displaymath} \bigwedge V = E(\bigoplus V_{2p+1})\otimes S(\bigoplus V_{2p}). \end{displaymath} It satisfies $\bigwedge(V \oplus W) \cong (\bigwedge V)\oplus (\bigwedge W)$. If $A$ is a pre-cga, any morphism, $f : V\to A$, to the underlying pre-gvs of $A$, has a unique extension to a pre-cga morphism $\bar{f} :\bigwedge V \to A$. If $(e_\alpha)_{\alpha \in I}$ is a homogeneous basis for $V$, $\bigwedge V$ and $T(V)$ may be written $\bigwedge((e_\alpha)_{\alpha \in I})$ and $T((e_\alpha)_{\alpha \in I})$ respectively. \textbf{Note:} \begin{itemize}% \item $T(V)$ is a non-commutative polynomial algebra, \item $\bigwedge V$ is a commutative polynomial algebra. \end{itemize} \hypertarget{word_length_filtrations_on__and_}{}\paragraph*{{Word length filtrations on $\bigwedge V$ and $T(V)$.}}\label{word_length_filtrations_on__and_} On $\bigwedge V$ (resp. $T(V)$) write \begin{displaymath} \bigwedge V = \bigoplus_{k\geq 0}\bigwedge^k V, \end{displaymath} where $\bigwedge^k V$ is the subspace generated by all $v_1\wedge \ldots \wedge v_k$ with $v_1 \in V$. Then $F^p \bigwedge V = \bigwedge^{\geq p} V = \bigoplus_{k\geq p}\bigwedge^k V$, resp. $T^k (V) = V^{\otimes k}$ and $F^p T(V) = T^{\geq p}(V) = \bigoplus_{k\geq p} T^k (V)$). If $(\bigwedge V,d)$ is a pre-cdga, which is free as a pre-cga on a fixed $V$, then $d$ is the sum of derivations $d_k$ defined by the condition $d_k (V) \subseteq \bigwedge^k V$. There is an isomorphism between $V$ and $Q(\bigwedge V)$, which identifies $d_1$ with $Q(d)$. The derivation $d_1$ (resp. $d_2$) is called the \emph{linear part} (resp. \emph{quadratic part}) of $d$. \hypertarget{sum_and_product_of_cdgas}{}\paragraph*{{Sum and Product of CDGAs.}}\label{sum_and_product_of_cdgas} If $(A,d)$ and $(A',d')$ are two cdgas, their (categorical) \emph{sum} (i.e. coproduct) is their tensor product, $(A,d)\otimes(A',d' )$, whilst their product is the `direct sum', $(A,d)\oplus (A',d' )$. \hypertarget{koszul_convention}{}\paragraph*{{Koszul convention}}\label{koszul_convention} Given a permutation $\sigma$ of a graded object $(x_1, \ldots, x_p)$, the \emph{Koszul sign}, $\varepsilon(\sigma)$ is defined by \begin{displaymath} x_1\wedge \ldots \wedge x_p = \varepsilon(\sigma)x_{\sigma(1)} \wedge \ldots \wedge x_{\sigma(p)} \end{displaymath} in $\bigwedge(x_1, \ldots, x_p )$. We note that although we write $\varepsilon(\sigma)$, $\sigma$ does not suffice to define it as it depends also on the degrees of the various $x_i$. \hypertarget{terminology}{}\subsubsection*{{Terminology}}\label{terminology} Baues (in his book on \emph{Algebraic Homotopy}) has suggested using the terminology \textbf{chain algebra} for positively graded differential algebras and \textbf{cochain algebras} for the negatively graded ones. This seems to be a very useful convention. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[differential algebra]] \end{itemize} \hypertarget{model_category_structure}{}\subsubsection*{{Model category structure}}\label{model_category_structure} There is a standard [[model category]] structure on $dgAlg$.See [[model structure on dg-algebras]]. \hypertarget{cosimplicial_algebras}{}\subsubsection*{{Cosimplicial algebras}}\label{cosimplicial_algebras} The [[monoidal Dold-Kan correspondence]] effectively identifies non-negatively graded [[chain complex]] algebras with simplicial algebras, and non-negatively graded [[cochain complex]] algebras with [[cosimplicial algebra]]s. Since cosimplicial algebras have a fundamental interpretation dual to [[∞-space]], as described at [[∞-quantity]], this can be understood as explaining the great role differential graded algebras are playing in various context, suchh as notably in \begin{itemize}% \item [[rational homotopy theory]]. \end{itemize} \hypertarget{dgcoalgebra}{}\subsubsection*{{dg-coalgebra}}\label{dgcoalgebra} Dually, a [[comonoid]] in [[chain complex]]es is a [[dg-coalgebra]]. \hypertarget{homological_smoothness}{}\subsubsection*{{Homological smoothness}}\label{homological_smoothness} A dga $A$ is \textbf{[[homologically smooth dga|homologically smooth]]} if as a dg-bimodule $_A A_A$ over itself it has a bounded resolution by finitely generated projective dg-bimodules. \hypertarget{formal_dgalgebra}{}\subsubsection*{{Formal dg-algebra}}\label{formal_dgalgebra} A dg-algebra $A$ is a [[formal dg-algebra]] if there exists a morphism \begin{displaymath} A \to H^\bullet(A) \end{displaymath} to its [[chain homology and cohomology|chain (co)homology]] (regarded as a dg-algebra with trivial differential) that is a [[quasi-isomorphism]]. \hypertarget{curved_dgalgebra}{}\subsubsection*{{Curved dg-algebra}}\label{curved_dgalgebra} \begin{itemize}% \item [[curved dg-algebra]] \end{itemize} [[!redirects differential graded algebras]] [[!redirects differential graded module]] [[!redirects chain algebra]] [[!redirects cochain algebra]] [[!redirects dg-algebra]] [[!redirects dg-algebras]] [[!redirects differential-graded algebra]] [[!redirects differential-graded algebras]] [[!redirects commutatiev dg-algebra]] [[!redirects commutative dg-algebras]] [[!redirects commutative differential graded algebra]] [[!redirects commutative differential graded algebras]] \end{document}