\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{differential graded coalgebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differentialgraded_objects}{}\paragraph*{{Differential-graded objects}}\label{differentialgraded_objects} [[!include differential graded objects - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{abstract_definition}{Abstract definition}\dotfill \pageref*{abstract_definition} \linebreak \noindent\hyperlink{detailed_component_definition}{Detailed component definition}\dotfill \pageref*{detailed_component_definition} \linebreak \noindent\hyperlink{precoalgebra}{Pre-coalgebra}\dotfill \pageref*{precoalgebra} \linebreak \noindent\hyperlink{coaugmentations}{Coaugmentations}\dotfill \pageref*{coaugmentations} \linebreak \noindent\hyperlink{the_commutation_morphism}{The commutation morphism}\dotfill \pageref*{the_commutation_morphism} \linebreak \noindent\hyperlink{tensor_product_of_pregcs}{Tensor product of pre-gcs.}\dotfill \pageref*{tensor_product_of_pregcs} \linebreak \noindent\hyperlink{coderivations_of_pregraded_coalgebras}{Coderivations of pre-graded coalgebras}\dotfill \pageref*{coderivations_of_pregraded_coalgebras} \linebreak \noindent\hyperlink{differential_graded_coalgebras}{Differential graded coalgebras}\dotfill \pageref*{differential_graded_coalgebras} \linebreak \noindent\hyperlink{cocommutative_predgcs}{Cocommutative pre-dgcs}\dotfill \pageref*{cocommutative_predgcs} \linebreak \noindent\hyperlink{cdgc}{CDGC}\dotfill \pageref*{cdgc} \linebreak \noindent\hyperlink{connected__cdgcs}{$n$-connected $\eta$ cdgcs}\dotfill \pageref*{connected__cdgcs} \linebreak \noindent\hyperlink{homalgebras_and_duals}{Hom-algebras and duals}\dotfill \pageref*{homalgebras_and_duals} \linebreak \noindent\hyperlink{coalgebra_filtrations}{Coalgebra filtrations}\dotfill \pageref*{coalgebra_filtrations} \linebreak \noindent\hyperlink{filtrations_of_the_primitives}{Filtrations of the primitives}\dotfill \pageref*{filtrations_of_the_primitives} \linebreak \noindent\hyperlink{the_pregc_structure_on_}{The pre-gc structure on $T(V)$}\dotfill \pageref*{the_pregc_structure_on_} \linebreak \noindent\hyperlink{shuffles}{Shuffles}\dotfill \pageref*{shuffles} \linebreak \noindent\hyperlink{the_precgc_structure_on_}{The pre-cgc structure on $\bigwedge V$}\dotfill \pageref*{the_precgc_structure_on_} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{differential_graded_algebras}{Differential graded algebras}\dotfill \pageref*{differential_graded_algebras} \linebreak \noindent\hyperlink{semifree_dgcoalgebras_and_algebras}{Semifree dg-coalgebras and $L_\infty$-algebras}\dotfill \pageref*{semifree_dgcoalgebras_and_algebras} \linebreak \noindent\hyperlink{model_category_structure}{Model category structure}\dotfill \pageref*{model_category_structure} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{AsFilteredColimits}{As filtered colimits of finite-dimensional pieces}\dotfill \pageref*{AsFilteredColimits} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{abstract_definition}{}\subsubsection*{{Abstract definition}}\label{abstract_definition} A \emph{dg-coalgebra} is a [[comonoid]] in the [[category]] of [[chain complex]]es. Equivalently, this is a graded [[coalgebra]] $C$ equipped with a [[coderivation]] \begin{displaymath} D : C \to C \end{displaymath} that is of degree -1 and squares to 0, \begin{displaymath} D^2 = 0 \,. \end{displaymath} \hypertarget{detailed_component_definition}{}\subsubsection*{{Detailed component definition}}\label{detailed_component_definition} \hypertarget{precoalgebra}{}\paragraph*{{Pre-coalgebra}}\label{precoalgebra} A \emph{pre-graded coalgebra} (pre-gc), $(C,\Delta, \varepsilon)$, is a [[graded vector space|pre-gvs]] $C$ together with linear maps of degree 0 \begin{displaymath} \Delta: C\to C\otimes C, \varepsilon : C\to k, \end{displaymath} such that the obvious (usual) diagrams commute. (When there is no ambiguity, we may write $C$ instead of $(C,\Delta, \varepsilon)$.) The field $k$ is a coalgebra for the canonical isomorphism $k\to k\otimes k$ with $\varepsilon = id_k$. A morphism $\psi : C \to C'$ of pre-gcs is a linear mapping of degree zero such that \begin{displaymath} (\psi \otimes \psi)\circ \Delta = \Delta' \circ \psi and \varepsilon = \varepsilon' \circ \psi. \end{displaymath} The linear counit mapping $\varepsilon :C \to k$ is always a morphism of pre-gcs. \hypertarget{coaugmentations}{}\paragraph*{{Coaugmentations}}\label{coaugmentations} A \emph{coaugmentation} of a pre-gc is a morphism $\eta : k \to C$. We will write $1$ for $\eta(1)$. The cokernel $\bar{C}$ of $\eta$ can be identified with $Ker \varepsilon$ and so can be considered as a subspace of $C$. The reduced diagonal $\bar{\Delta} : \bar{C} \to \bar{C}\otimes \bar{C}$, induced by $\Delta$ is defined by $\Delta x = 1\otimes x + x\otimes 1 + \bar{\Delta }x$. The \emph{vector space of primitives} of $C$, denoted $P(C)$, is the kernel of the reduced diagonal. A morphism of coaugmented pre-gcs, $\psi : (C,\eta)\to (C',\eta')$, is a morphism of the pre-gcs which satisfies $\eta' = \psi \circ \eta$. It preserves primitives. \hypertarget{the_commutation_morphism}{}\paragraph*{{The commutation morphism}}\label{the_commutation_morphism} Let $V$ and $V'$ be two pre-gvs. The commutation morphism \begin{displaymath} \tau : V\otimes V' \to V'\otimes V \end{displaymath} is defined by $\tau( v\otimes v') = (-1)^{|v||v'|} v'\otimes v$, on homogeneous elements. \hypertarget{tensor_product_of_pregcs}{}\paragraph*{{Tensor product of pre-gcs.}}\label{tensor_product_of_pregcs} Let $(C,\Delta, \varepsilon)$ and $(C',\Delta', \varepsilon')$ be two pre-graded coalgebras. The mappings \begin{displaymath} C\otimes C'\stackrel{\Delta\otimes \Delta'}{\to}C\otimes C\otimes C' \otimes C'\stackrel{C\otimes \tau \otimes C}{\to}(C\otimes C')\otimes (C\otimes C') \end{displaymath} and \begin{displaymath} C\otimes C'\stackrel{\varepsilon\otimes \varepsilon'}{\to}k \otimes k\stackrel{\cong}{\to}k \end{displaymath} give $C\otimes C'$ a pre-gc structure. If $\eta$ and $\eta'$ are coaugmentations of $C$ and $C'$ respectively, then $\eta\otimes\eta'$ defines a coaugmentation of $C\otimes C'$. \hypertarget{coderivations_of_pregraded_coalgebras}{}\paragraph*{{Coderivations of pre-graded coalgebras}}\label{coderivations_of_pregraded_coalgebras} [[Tim Porter|Tim]]: These are called derivations by some sources, but I think that they are the coderivations of other workers. (to be checked) If $C$ is a pre-gc, a \emph{coderivation} of degree $p\in \mathbb{Z}$, is a linear map $\theta \in Hom_p(C,C)$ such that \begin{displaymath} \Delta \circ \theta = (\theta \otimes id_C + \tau \circ(\theta \otimes id_C)\circ \tau)\circ \Delta, and \varepsilon\circ \theta = 0. \end{displaymath} A coderivation $\theta$ of a coaugmented pre-gc $(C,\eta)$ is a coderivation of $C$ such that $\theta\circ \eta = 0$. \hypertarget{differential_graded_coalgebras}{}\paragraph*{{Differential graded coalgebras}}\label{differential_graded_coalgebras} A \emph{differential} $\partial$ on a (coaugmented) pre-gc, $C$, is a coderivation of degree -1 such that $\partial\circ\partial = 0$. The pair, $(C, \partial)$ is called a \emph{differential (coaugmented) pre-graded coalgebra} (pre-dgc). Its homology $H(C,\partial)$ will be a pre-gc. If $(C,\partial)$ and $(C',\partial')$ are two pre-dgcs, then their tensor product $(C,\partial)\otimes(C',\partial')$ is a pre-gdgc with the structures defined earlier. A \emph{morphism} of (coaugmented) pre-dgcs is a morphism both of (coaugmented) pre-gcs and of pre-dgvs. We denote the resulting categories by $pre DGC$ (resp. $pre \eta DGC$). \hypertarget{cocommutative_predgcs}{}\paragraph*{{Cocommutative pre-dgcs}}\label{cocommutative_predgcs} A pre-gc $C$ is \emph{cocommutative} if $\tau\circ\Delta = \Delta$, similarly for a pre-dgc. The subcategories of cocommutative d.g. coalgebras will be denoted $pre CDGC$ (resp. $pre \eta CDGC$). \hypertarget{cdgc}{}\paragraph*{{CDGC}}\label{cdgc} A \emph{cocommutative differential graded coalgebra} is a pre-cdgc on a graded vector space of lower grading (so $C_p = 0$ for $p \lt 0$). This gives categories $CDGC$ (resp. $\eta CDGC$). \hypertarget{connected__cdgcs}{}\paragraph*{{$n$-connected $\eta$ cdgcs}}\label{connected__cdgcs} A coaugmented cdgc $(C, \partial)$ is \emph{$n$-connected} if $\bar{C}_p = 0$ for $p\leq n$. This gives a category $CDGC_n$. Any connected (i.e. $0$-connected) cdgc is canonically coaugmented with $\bar{C}$ coinciding with $C_+$. \hypertarget{homalgebras_and_duals}{}\paragraph*{{Hom-algebras and duals}}\label{homalgebras_and_duals} Let $(C,\partial)$ be a pre-cdgc and $(A,d)$ a pre-cdga. The pre-dgvs $(Hom(C,A),D)$ is a pre-cdga for the usual differential and the multiplication $f.g = \mu\circ (f\otimes g)\circ \Delta$, \begin{displaymath} C\stackrel{\Delta}{\to}C\otimes C\stackrel{(f\otimes g)}{\to}A\otimes A\stackrel{\mu}{\to} A, \end{displaymath} for $f,g \in Hom(C,A)$. In particular $\#(C,\partial)= (Hom(C,k),D)$ defines a functor from $pre CDGC$ to $pre CDGA$, which commutes with homology and is such that $\# CDGC_n \subseteq CDGA^n$. Conversely, if $(A,d)$ is a pre-cdga of finite type, $\#(A,d)$ is a pre-cdgc. \hypertarget{coalgebra_filtrations}{}\paragraph*{{Coalgebra filtrations}}\label{coalgebra_filtrations} Let $(C,\partial)$ be a pre-dgc. A \emph{coalgebra filtration} (resp. \emph{differential coalgebra filratation}) of $(C,\partial)$ is a family of subspaces $F_p C$, $p\in \mathbb{Z}$ such that \begin{displaymath} F_p C\subseteq F_{p+1} C, \quad \Delta F_p C \subseteq \sum_k F_k C\otimes F_{p-k} C, \quad (resp.\quad and \quad \partial F_p C\subseteq F_p C). \end{displaymath} \hypertarget{filtrations_of_the_primitives}{}\paragraph*{{Filtrations of the primitives}}\label{filtrations_of_the_primitives} Let $(C,\eta)$ be a coaugmented pre-gc, $\bar{C}$ the cokernel of $\eta$, $\bar{\Delta}$, the reduced diagonal. The iteration of $\bar{\Delta}$ is defined by \begin{displaymath} \bar{\Delta}^1 = \bar{\Delta}; \quad \bar{\Delta}^p = (\bar{\Delta}\otimes \bar{C} \otimes \ldots \bar{C}) \otimes \bar{\Delta}^{(p-1)}. \end{displaymath} The (increasing) filtration of the primitives is $F_p C = Ker\bar{\Delta}^p$, $p\geq 1$. It is a graded coalgebra filtration. If $(C,\partial, \eta)$ is a coaugmented pre-dgc, each $F_p C$ is stable under the differential and, in particular, $F_1 = P(C)$. $P$ thus defines a functor from $pre \eta CDGC$ to $pre DGVS$. Let $\mu$ be the comultiplication of the pre-ga $\# C$, the dual of $C$. Elementary results on duality show, for finite type: $Im\bar{\mu}^p$ is the orthogonal complement of $Ker\bar{\Delta}^p$, so, in particular, $Q(\# C) =\# P(C)$. Let $(C,\eta)$ be a coaugmented pre-gc and $F_p C$ the filtration of its primitives. $C$ is \emph{conilpotent} if $C = \bigcup_k F_k C$. A connected coalgebra is conilpotent and conilpotency is preserved by tensor product. \hypertarget{the_pregc_structure_on_}{}\paragraph*{{The pre-gc structure on $T(V)$}}\label{the_pregc_structure_on_} We will denote by $T'(V)$, the gvs $T(V)$, together with the coalgebra structure in which the reduced diagonal is given by \begin{displaymath} \bar{\Delta}(v_1\otimes \ldots \otimes v_n) = \sum_{p=1}^{n-1} (v_1\otimes \ldots \otimes v_p)\otimes(v_{p+1}\otimes \ldots \otimes v_n). \end{displaymath} The counit and the coaugmentation are the natural mappings $T(V)\to k$ and $k\to T(V)$, respectively. The coalgebra $T' (V)$ is non-commutative if $dim V\gt 1$ and has $V$ as its vector space of primitives. If $C$ is a conilpotent pre-gc, then any morphism $f : C\to V$ of pre-gvs for which $f(1) = 0$, admits a unique lifting to a pre-gc morphism $\hat{f}:C \to T'(V)$. \hypertarget{shuffles}{}\paragraph*{{Shuffles}}\label{shuffles} A \emph{$(p,q)$-[[shuffle]]} $\sigma$ is a permutation of $\{1, \ldots, p+q\}$ such that \begin{displaymath} \sigma(i) \lt \sigma(j) \quad if \quad 1\leq i\lt j\leq p \quad or \quad p+1 \leq i \lt j\leq p+q. \end{displaymath} \hypertarget{the_precgc_structure_on_}{}\paragraph*{{The pre-cgc structure on $\bigwedge V$}}\label{the_precgc_structure_on_} We will denote $\bigwedge' V$, the gvs $\bigwedge V$ together with the coalgebra structure in which the reduced diagonal is given by \begin{displaymath} \bar{\Delta}(v_1\wedge \ldots \wedge v_n) = \sum_{p=1}^{n-1} \sum_\sigma\varepsilon(\sigma)(v_{\sigma(1)}\wedge \ldots \wedge v_{\sigma(p)})\otimes(v_{\sigma(p+1)}\wedge \ldots \wedge v_{\sigma(n)}), \end{displaymath} in which the second sum is over all $(p,n-p)$-shuffles and $\varepsilon(\sigma)$ is the Koszul sign of $\sigma$. The counit and coaugmentation are the natural mappings $\bigwedge V \to k$, and $k\to \bigwedge V$ respectively. If $C$ is a conilpotent pre-cgc, any pre-gvs morphism $f:C \to V$ for which $f(1) = 0$ admits a unique lifting to a pre-cgc morphism $\hat{f} : C \to \bigwedge' V$. There is an injective homomorphism of pre-gcs \begin{displaymath} \chi : \bigwedge{\!}' V \to T'(V) \end{displaymath} given by \begin{displaymath} \chi(x_1\wedge \ldots x_n) = \sum_\nu \varepsilon(\nu)x_{\nu(1)}\otimes \ldots \otimes x_{\nu(n)}, \end{displaymath} where the sum is over all permutations and $\varepsilon(\sigma)$ is the corresponding Koszul sign. It has, as image, all the symmetric tensors (in the graded sense). On $\bigwedge' V$ and $T'(V)$, the filtration of the primitives comes from a gradation \begin{displaymath} F_p\bigwedge{\!}' V = \bigwedge^{\leq p}V = \bigoplus_{k\leq p}\bigwedge^k V; \end{displaymath} \begin{displaymath} F_p T'(V) = T^{\leq p}(V) = \bigoplus_{k\leq p} T^k(V). \end{displaymath} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \hypertarget{differential_graded_algebras}{}\subsubsection*{{Differential graded algebras}}\label{differential_graded_algebras} Dually, a [[dg-algebra]] is a [[monoid]] in [[chain complex]]es. \hypertarget{semifree_dgcoalgebras_and_algebras}{}\subsubsection*{{Semifree dg-coalgebras and $L_\infty$-algebras}}\label{semifree_dgcoalgebras_and_algebras} The notion of dg-coalgebra whose underlying [[coalgebra]] is cofree is related by duality to that of [[semifree dga]]. Semicofree dg-coalgebras concentrated in negative degree and with differential of degree -1 are the same as [[L-∞-algebras]] \hypertarget{model_category_structure}{}\subsubsection*{{Model category structure}}\label{model_category_structure} There is a [[model structure on dg-coalgebras]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{AsFilteredColimits}{}\subsubsection*{{As filtered colimits of finite-dimensional pieces}}\label{AsFilteredColimits} \begin{prop} \label{}\hypertarget{}{} Every dg-coalgebra is the [[filtered colimit]] of its finite-dimensional sub-dg-coalgebras. \end{prop} This is due to (\hyperlink{GetzlerGoerss99}{Getzler-Goerss 99}), in generalization to the analogous fact for plain [[coalgebras]], see at \emph{\href{coalgebra#AsFilteredColimits}{coalgebra -- As filtered colimits}}. See also at \emph{[[L-infinity algebra]]} the section \emph{\href{L-infinity-algebra#IndConilpotency}{Ind-Conilpotency}}. This plays a role for instance for constructing [[model structures for L-infinity algebras]], see \href{model+structure+for+L-infinity+algebras#OnProAlg}{there}. \hypertarget{references}{}\subsection*{{References}}\label{references} The [[model structure on dg-coalgebras]] is due to \begin{itemize}% \item [[Ezra Getzler]], [[Paul Goerss]], \emph{A model category structure for differential graded coalgebras}, 1999 (\href{http://www.math.northwestern.edu/~pgoerss/papers/model.ps}{ps}, [[GetzlerGoerss99.pdf:file]]) \end{itemize} [[!redirects differential graded coalgebras]] [[!redirects dg-coalgebra]] [[!redirects dg-coalgebras]] \end{document}