\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{differential graded vector space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{differentialgraded_objects}{}\paragraph*{{Differential-graded objects}}\label{differentialgraded_objects} [[!include differential graded objects - contents]] \hypertarget{homological_algebra}{}\paragraph*{{Homological algebra}}\label{homological_algebra} [[!include homological algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{weak_equivalences}{Weak equivalences}\dotfill \pageref*{weak_equivalences} \linebreak \noindent\hyperlink{homotopies}{Homotopies}\dotfill \pageref*{homotopies} \linebreak \noindent\hyperlink{suspension_for_pre_dgvs}{Suspension for (pre-) dgvs}\dotfill \pageref*{suspension_for_pre_dgvs} \linebreak \noindent\hyperlink{tensor_product_of_pre_dgvs}{Tensor product of (pre-) dgvs}\dotfill \pageref*{tensor_product_of_pre_dgvs} \linebreak \noindent\hyperlink{duals_of_predgvs}{Duals of (pre-)dgvs}\dotfill \pageref*{duals_of_predgvs} \linebreak \noindent\hyperlink{chains_and_cochains_terminology}{Chains and cochains: terminology}\dotfill \pageref*{chains_and_cochains_terminology} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \textbf{Differential (pre-)graded vector spaces.} (We continue from [[graded vector space|graded vector spaces]] with the terminology of pre-gvs for the general case and gvs for the positively or negatively graded ones.) A \textbf{differential (pre-)graded vector space}, (dgvs), is a pair $(V,\partial)$, where $V$ is a (pre-)graded vector space and $\partial \in Hom_{-1}(V,V)$ satisfies $\partial\circ\partial = 0$. This endomorphism, $\partial$, of degree -1 is called the [[differential]] or sometimes the \emph{boundary operator} of the dgvs. To link it with [[differential object]], note that using the suspension (as in [[graded vector space]]) as the translation (see [[category with translation]]) and then the differential is $\partial : V\to s(V)$. A dgvs is essentially the same as a [[chain complex]] of vector spaces. (Some questions of terminology are addressed further down this entry.) As usual, $Ker \partial / Im \partial$ is called the [[homology]] of $(V,\partial)$, denoted $H(V,\partial)$. Let $(V,\partial)$, $(V',\partial')$ be two pre-dgvs \begin{displaymath} Hom(V,V') = \bigoplus_{p\in \mathbb{Z}}Hom_p(V,V') \end{displaymath} is a pre-dgvs with differential \begin{displaymath} Df = \partial'\circ f - (-1)^{|f|}f\circ\partial \end{displaymath} for $f$ homogeneous. A degree $r$ linear morphism $f$ is \emph{compatible with the differentials} if it is a cycle for this differential $D$, i.e., $Df = 0$ or $\partial' f = (-1)^{r}f\partial.$ A \textbf{morphism between pre-dgvs} is a linear morphism of degree 0 that is compatible with the differentials: \begin{displaymath} f: (V,\partial)\to (V',\partial'). \end{displaymath} This induces $H(f): H(V,\partial)\to H(V',\partial').$ We get a category $pre - DGVS$ and $H$ is a functor $H : pre\! -\! DGVS\to pre\!-\! GVS$. \hypertarget{weak_equivalences}{}\subsubsection*{{Weak equivalences}}\label{weak_equivalences} If $f: (V,\partial)\to (V',\partial')$ in \{$\backslash$sf pre-DGVS\}, then $f$ is a \textbf{weak equivalence} or [[quasi-isomorphism]] if $H(f)$ is an isomorphism. In this case we write $f: (V,\partial)\stackrel{\simeq}{\to} (V',\partial')$ \hypertarget{homotopies}{}\subsubsection*{{Homotopies}}\label{homotopies} Let $f,f' : (V,\partial)\to (V',\partial')$ be two morphisms in $pre-DGVS$. We say $f$ and $f'$ are \textbf{homotopic} denoted $f\sim f'$ if $f-f'$ is a boundary in $(Hom(V,V'),D)$, i.e., there is some $h : V \to V'$ of degree +1 such that $f-f' = Dh = \partial' h + h\partial$. \textbf{Contractible and Acyclic DGVSs} A dgvs $(V,\partial)$ is \emph{contractible} if the identity map on $V$ is homotopic to the zero morphism and is \emph{acyclic} if $H(V,\partial) = 0$. \textbf{Remarks} (i) A \emph{contracting homotopy} $h : Id_V \sim O_V$ is a degree 1 map such that $\partial h(x) + h(\partial x) = x$ for all $x$ in $V_p$. (ii) If $(V,\partial)$ is contractible, then it is acyclic and conversely. The converse depends strongly on our working with vector spaces. If we worked with modules over a commutative ring, $k$, then the correct result would be `'If $(V,\partial)$ is acyclic and projective in each dimension, then it is contractible.'` This is important when looking at, for instance, diagrams of dgvs since even if each individual object in the diagram may be contractible, it might be impossible to pick the contracting homotopies to give a map of diagrams, i.e., to be compatible with the structural maps. \hypertarget{suspension_for_pre_dgvs}{}\subsubsection*{{Suspension for (pre-) dgvs}}\label{suspension_for_pre_dgvs} If $(V,\partial)$ is a pre-dgvs, then its $r$-suspension $(s^rV,\partial)$, is the $r$-suspension, $s^rV$, of $V$ together with the differential \begin{displaymath} \partial s^rv = (-1)^rs^r(\partial v). \end{displaymath} \hypertarget{tensor_product_of_pre_dgvs}{}\subsubsection*{{Tensor product of (pre-) dgvs}}\label{tensor_product_of_pre_dgvs} If $(V,\partial)$, and $(V',\partial')$ are pre-dgvs, then we give the tensor product, $V\otimes V'$, the differential given on generators by \begin{displaymath} \partial(v\otimes v') = (\partial v) \otimes v' + (-1)^{|v|}v \otimes (\partial' v' ), \end{displaymath} and we denote the result by $(V,\partial)\otimes (V', \partial')$. We have ([[Kunneth theorem]]) \begin{displaymath} H((V,\partial)\otimes (V', \partial')) \cong H(V,\partial)\otimes H(V', \partial'). \end{displaymath} \hypertarget{duals_of_predgvs}{}\subsubsection*{{Duals of (pre-)dgvs}}\label{duals_of_predgvs} The dual $\#(V,\partial) = (\# V,\#\partial)$ of a pre-dgvs $(V,\partial)$ is given by $\# V$ with differential $(\# \partial ) = - ^t \partial$. This satisfies \begin{displaymath} \langle(\# \partial)f; v\rangle + (-1)^{|f|}\langle f; \partial v\rangle = 0. \end{displaymath} \hypertarget{chains_and_cochains_terminology}{}\subsubsection*{{Chains and cochains: terminology}}\label{chains_and_cochains_terminology} If $(V,\partial)$ is a pre-dgvs with `lower grading' that is the summands are written $V_p$, then $(V,\partial)$ may be called a [[chain complex]] and terms such as \emph{cycle}, \emph{boundary}, [[homology]] are used with the usual meanings. If $(V,\partial)$ is presented with the `upper grading', so $V^p$, then the corresponding words will have a `co' as prefix, cochain complex, cocycle, etc. There is no real distinction between the two cases in the abstract, but in applications there is often a fixed `dimensional' interpretation and then the `natural' and `geometric' aspects determine which is more appropriate or useful. \end{document}