\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{differential string structure -- proofs} This page contains technical details to be used at the main page \emph{[[differential string structure]]} . See there for context. \vspace{.5em} \hrule \vspace{.5em} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{FactorizationOfTheLInfintiyCocycle}{Factorization of the $L_\infty$-cocycle}\dotfill \pageref*{FactorizationOfTheLInfintiyCocycle} \linebreak \noindent\hyperlink{FactorizationOfTheLInfintiyCocycle}{Factorization of the differential $L_\infty$-cocycle}\dotfill \pageref*{FactorizationOfTheLInfintiyCocycle} \linebreak \noindent\hyperlink{ModifiedWeilAlgebra}{The modified Weil algebra}\dotfill \pageref*{ModifiedWeilAlgebra} \linebreak \noindent\hyperlink{TheLInftyDifferentialLift}{The differential lift}\dotfill \pageref*{TheLInftyDifferentialLift} \linebreak \hypertarget{FactorizationOfTheLInfintiyCocycle}{}\subsection*{{Factorization of the $L_\infty$-cocycle}}\label{FactorizationOfTheLInfintiyCocycle} \begin{prop} \label{FactorizationOfTheCocycle}\hypertarget{FactorizationOfTheCocycle}{} The $L_\infty$-algebra cocycle \begin{displaymath} \mu : \mathfrak{so} \to b^2 \mathbb{R} \end{displaymath} factors as \begin{displaymath} \mathfrak{so} \stackrel{}{\to} (b \mathbb{R} \to \mathfrak{string}) \stackrel{}{\to} b^2 \mathbb{R} \end{displaymath} given dually on CE-algebras by \begin{displaymath} CE(\mathfrak{so}) \stackrel{ \left( \itexarray{ t^a \mapsto t^a \\ b \mapsto 0 \\ c \mapsto \mu } \right) }{\leftarrow} CE(b \mathbb{R} \to \mathfrak{string}) \stackrel{ \left( \itexarray{ c \mapsto c } \right) }{\leftarrow} CE(b^2 \mathbb{R}) \,. \end{displaymath} The left morphism is a [[quasi-isomorphism]]. \end{prop} \begin{proof} To see that we have a quasi-isomorphism, notice that the dg-algebra $CE(b \mathbb{R} \to \mathfrak{string})$ is [[isomorphic]] to the one with generators $\{t^a, b, c'\}$ and differentials \begin{displaymath} \begin{aligned} d|_{\mathfrak{g}^*} & = [-,-]^* \\ d b & = c' \\ d c' & = 0 \end{aligned} \,, \end{displaymath} where the isomorphism is given by the identity on the $t^a$s and on $b$ and by \begin{displaymath} c \mapsto c' + \mu \,. \end{displaymath} The primed dg-algebra is the [[tensor product]] $CE(\mathfrak{g}) \otimes CE( inn(b \mathbb{R}))$, where the second factor is manifestly cohomologically trivial. \end{proof} \hypertarget{FactorizationOfTheLInfintiyCocycle}{}\subsection*{{Factorization of the differential $L_\infty$-cocycle}}\label{FactorizationOfTheLInfintiyCocycle} We now give a concrete construction showing \begin{prop} \label{DifferentialLInfinityLift}\hypertarget{DifferentialLInfinityLift}{} The factorization \begin{displaymath} CE(\mathfrak{so}) \stackrel{ \left( \itexarray{ t^a \mapsto t^a \\ b \mapsto 0 \\ c \mapsto \mu } \right) }{\leftarrow} CE(b \mathbb{R} \to \mathfrak{string}) \stackrel{ \left( \itexarray{ c \mapsto c } \right) }{\leftarrow} CE(b^2 \mathbb{R}) \end{displaymath} from \hyperlink{FactorizationOfTheLInfintiyCocycle}{above} lifts to a factorization of differential $L_\infty$-algebraic cocycles \begin{displaymath} \itexarray{ CE(\mathfrak{so}) & \underoverset{\simeq}{ \left( \itexarray{ t^a \mapsto t^a \\ b \mapsto 0 \\ c \mapsto \mu } \right) }{\leftarrow} & CE(b \mathbb{R} \to \mathfrak{string}) & \stackrel{ \left( \itexarray{ c \mapsto c } \right) }{\leftarrow} & CE(b^2 \mathbb{R}) \\ \uparrow^\mathrlap{} && \uparrow^\mathrlap{} && \uparrow^\mathrlap{} \\ W(\mathfrak{so}) & \underoverset{\simeq}{ }{\leftarrow} & W(b \mathbb{R} \to \mathfrak{string}) & \stackrel{ }{\leftarrow} & W(b^2 \mathbb{R}) \\ \uparrow^\mathrlap{} && \uparrow^\mathrlap{} && \uparrow^\mathrlap{} \\ inv(\mathfrak{so}) & \underoverset{\simeq}{ }{\leftarrow} & \tilde inv(b \mathbb{R} \to \mathfrak{string}) & \stackrel{ }{\leftarrow} & inv(b^2 \mathbb{R}) } \,. \end{displaymath} \end{prop} \begin{proof} This is at its heart trivial, but potentially a bit tedious. We proceed in two steps: \begin{enumerate}% \item consider a ``modified Weil algebra'' of the twisted string Lie 3-algebra $(b \mathbb{R} \to \mathfrak{string})$ in \hyperlink{ModifiedWeilAlgebra}{The modified Weil algebra}; \item construct the desired factorization by factoring itself through two fairly evident morphisms into and out of the modified Weil algebra, in \href{TheLInftyDifferentialLift}{The differential lift}. \end{enumerate} \end{proof} \hypertarget{ModifiedWeilAlgebra}{}\subsubsection*{{The modified Weil algebra}}\label{ModifiedWeilAlgebra} Our factorization \href{}{below} makes use of an isomorphic copy of the Weil algebra $W(b\mathbb{R} \to \mathfrak{g}_\mu)$. \begin{prop} \label{ShiftedWeilAlgebra}\hypertarget{ShiftedWeilAlgebra}{} The [[Weil algebra]] $W(b\mathbb{R} \to \mathfrak{g}_\mu)$ of $(b^2 \mathbb{R} \to \mathfrak{g})$ is given on the extra shifted generators $\{r^a := \sigma t^a, h := \sigma b, g := \sigma c\}$ (where $\sigma$ is the shift operator extended as a graded derivation, see [[Weil algebra]]) by \begin{itemize}% \item $d t^a = -\frac{1}{2} C^a{}_{b c} t^b \wedge t^c + r^a$; \item $d b = - \mu + c + h$; \item $d c = g$, \end{itemize} with [[Bianchi identities]] \begin{itemize}% \item $d r^a = - C^a{}_{b c} t^b \wedge r^c$ \item $d h = \sigma \mu - g$; \item $d g = 0$. \end{itemize} Let $\tilde W(b\mathbb{R} \to \mathfrak{g}_\mu)$ be the dg-algebra with the same underlying graded algebra as $W(b\mathbb{R} \to \mathfrak{g}_\mu)$ but with the differential modified as follows \begin{itemize}% \item $d t^a = -\frac{1}{2} C^a{}_{b c} t^b \wedge t^c + r^a$; \item $d r^a = - C^a{}_{b c} t^b \wedge r^a$; \item $d b = - cs + c + \tilde h$; \item $d \tilde h = \langle -,-\rangle - g$; \item $d c = g$ . \item $d g = 0$, \end{itemize} where ``$\tilde h$'' is the new name for the generator that used to be called ``$h$'' There is an [[isomorphism]] \begin{displaymath} W(b\mathbb{R} \to \mathfrak{g}_\mu) \to \tilde W(b\mathbb{R} \to \mathfrak{g}_\mu) \end{displaymath} in [[dgAlg]] that is the identity on all generators except on $h$, where it is given by \begin{displaymath} h \mapsto \tilde h + (\mu - cs) \,. \end{displaymath} \end{prop} \begin{note} \label{RemarkOnShiftedWeilAlgebra}\hypertarget{RemarkOnShiftedWeilAlgebra}{} Where the formula for the differential of $W(b\mathbb{R}\to \mathfrak{g}_\mu)$ has the 3-cocycle $\mu$ that for $\tilde W(b\mathbb{R}\to \mathfrak{g}_\mu)$ has the [[Chern-Simons element]] $cs$. The shift by $cs-\mu$ is precisely what shifts the curvature characteristic $d_{W(\mathfrak{g})}\mu$ into the shifted copy of $\mathfrak{g}^*$ in the Weil algebra, thus exhibiting the modified $h$ as an [[invariant polynomial]]. \end{note} \begin{cor} \label{TheInvariantPolynomials}\hypertarget{TheInvariantPolynomials}{} The [[invariant polynomial]]s on $(b \mathbb{R} \to \mathfrak{g}_\mu)$ are generated from those of $\mathfrak{g}_\mu$ together with $\tilde h$ and $g$: \begin{displaymath} \tilde inv(b \mathbb{R} \to \mathfrak{string}) = (inv(\mathfrak{so})\otimes \langle \tilde h, g\rangle)/(d \tilde h = \langle -,-\rangle - g) \,. \end{displaymath} \end{cor} \hypertarget{TheLInftyDifferentialLift}{}\subsubsection*{{The differential lift}}\label{TheLInftyDifferentialLift} We now use the isomorphism \begin{displaymath} W(b \mathbb{R} \to \mathfrak{string}) \stackrel{\simeq}{\to} \tilde W(b \mathbb{R} \to \mathfrak{string}) \end{displaymath} from prop. \ref{ShiftedWeilAlgebra} and obtain the desired factorization, as the composite \begin{displaymath} \itexarray{ CE(\mathfrak{so}) & \underoverset{\simeq}{ \left( \itexarray{ t^a \mapsto t^a \\ b \mapsto 0 \\ c \mapsto \mu } \right) }{\leftarrow} & CE(b \mathbb{R} \to \mathfrak{string}) & = & CE(b \mathbb{R} \to \mathfrak{string}) & \stackrel{ \left( \itexarray{ c \mapsto c } \right) }{\leftarrow} & CE(b^2 \mathbb{R}) \\ \uparrow^\mathrlap{i^*_{\mathfrak{so}}} && \uparrow^\mathrlap{i^*_{(b\mathbb{R} \to \mathfrak{string})}} && \uparrow^\mathrlap{} && \uparrow^\mathrlap{i^*_{b^2 \mathbb{R}}} \\ W(\mathfrak{so}) & \underoverset{\simeq}{ \left( \itexarray{ t^a \mapsto t^a \\ b \mapsto 0 \\ c \mapsto cs \\ r^a \mapsto r^a \\ \tilde h \mapsto 0 \\ g \mapsto \langle-,-\rangle } \right) }{\leftarrow} & W(b \mathbb{R} \to \mathfrak{string}) & \underoverset{\simeq}{ \left( \itexarray{ \tilde h \mapsto h + (cs - \mu) } \right) } {\leftarrow} & \tilde W(b \mathbb{R} \to \mathfrak{string}) & \stackrel{ \left( \itexarray{ c \mapsto c \\ g \mapsto g } \right) }{\leftarrow} & W(b^2 \mathbb{R}) \\ \uparrow^\mathrlap{p^*_{\mathfrak{so}}} && \uparrow^\mathrlap{} && \uparrow^\mathrlap{p^*_{(b \mathbb{R} \to \mathfrak{string})}} && \uparrow^\mathrlap{p^*_{b^2 \mathbb{R}}} \\ inv(\mathfrak{so}) & \underoverset{\simeq}{ \left( \itexarray{ \tilde h \mapsto 0 \\ g \mapsto \langle -,-\rangle \\ \langle \cdots \rangle \mapsto \langle \cdots \rangle } \right) }{\leftarrow} & \tilde inv(b \mathbb{R} \to \mathfrak{string}) & = & \tilde inv(b \mathbb{R} \to \mathfrak{string}) & \stackrel{ \left( \itexarray{ g \mapsto g } \right) }{\leftarrow} & inv(b^2 \mathbb{R}) } \,. \end{displaymath} Here \begin{itemize}% \item the unlabelled vertical morphisms are defined as the unique ones that make the respective square commute; \item the notation $\langle \cdots \rangle$ stands for all the [[invariant polynomial]]s of $\mathfrak{so}$ and $\langle-,-\rangle$ specifically for the [[Killing form]]. \end{itemize} \end{document}