\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{dihedral group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{DihedralGroups}{Dihedral groups}\dotfill \pageref*{DihedralGroups} \linebreak \noindent\hyperlink{BinaryDihedralGroup}{Binary dihedral/dicyclic groups}\dotfill \pageref*{BinaryDihedralGroup} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{group_cohomology}{Group cohomology}\dotfill \pageref*{group_cohomology} \linebreak \noindent\hyperlink{as_part_of_the_ade_pattern}{As part of the ADE pattern}\dotfill \pageref*{as_part_of_the_ade_pattern} \linebreak \noindent\hyperlink{group_presentation}{Group presentation}\dotfill \pageref*{group_presentation} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{quaternion_group__and_triality}{Quaternion group $Q_8$ and triality}\dotfill \pageref*{quaternion_group__and_triality} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{DihedralGroups}{}\subsubsection*{{Dihedral groups}}\label{DihedralGroups} The dihedral group, $D_{2n}$, is a [[finite group]] of [[order of a group|order]] $2n$. It may be defined as the [[symmetry group]] of a regular $n$-gon. For instance $D_6$ is the symmetry group of the equilateral triangle and is [[isomorphism|isomorphic]] to the [[symmetric group]], $S_3$. For $n \in \mathbb{N}$, $n \geq 1$, the dihedral group $D_{2n}$ is thus the [[subgroup]] of the [[orthogonal group]] $O(2)$ which is generated from the finite [[cyclic group|cyclic]] [[subgroup]] $C_n$ of $SO(2)$ and the [[reflection]] at the $x$-axis (say). It is a semi-direct product of $C_n$ and a $C_2$ corresponding to that reflection. Under the further embedding $O(2)\hookrightarrow SO(3)$ the (cyclic and) dihedral groups are precisely those [[finite subgroups of SO(3)]] that, among their [[ADE classification]], are not in the exceptional series. (see e.g. \hyperlink{Greenless01}{Greenless 01, section 2}) \begin{remark} \label{NotationConvention}\hypertarget{NotationConvention}{} \textbf{Warning on notation} There are two different conventions for numbering the dihedral groups. \begin{enumerate}% \item The above is the \emph{algebraic convention} in which the suffix gives the [[order]] of the group: ${\vert D_{2 n}\vert} = 2 n$. \item In the \emph{geometric convention} one writes ``$D_n$'' instead of ``$D_{2n}$'', recording rather the geometric nature of the object of which it is the symmetry group. Also beware that there is yet another group denoted $D_n$ mentioned at \emph{[[Coxeter group]]}. \end{enumerate} \end{remark} \hypertarget{BinaryDihedralGroup}{}\subsubsection*{{Binary dihedral/dicyclic groups}}\label{BinaryDihedralGroup} Under the further lift through the [[spin group]]-[[double cover]] map $SU(2) \simeq Spin(3) \to SO(3)$ of the [[special orthogonal group]], the dihedral group $D_{2n}$ is covered by the \emph{binary dihedral group}, also known as the \emph{dicyclic group} and denoted \begin{displaymath} 2 D_{2n} = Dic_n \end{displaymath} Equivalently, this is the lift of the dihedral group $D_{2n}$ (\hyperlink{DihedralGroups}{above}) through the [[pin group]] [[double cover]] of the [[orthogonal group]] [[O(2)]] to [[Pin(2)]] \begin{displaymath} \itexarray{ 2 D_{2n} &\overset{\phantom{AA}}{\hookrightarrow}& Pin_-(2) &\overset{\phantom{AA}}{\hookrightarrow}& Spin(3) \\ \big\downarrow &{}^{(pb)}& \big\downarrow &{}^{(pb)}& \big\downarrow \\ D_{2n} &\overset{\phantom{AA}}{\hookrightarrow}& O(2) &\overset{\phantom{AA}}{\hookrightarrow}& SO(3) } \end{displaymath} Explicity, let $\mathbb{H} \simeq \mathbb{C} \oplus j \mathbb{C}$ be the [[quaternions]] realized as the [[Cayley-Dickson double]] of the [[complex numbers]], and identify the [[circle group]] \begin{displaymath} SO(2) \simeq S\big( \mathbb{C}\big) \hookrightarrow \mathbb{H} \end{displaymath} with the [[unit circle]] in $\mathbb{C} \hookrightarrow \mathbb{H}$ this way, with group structure given by multiplication of [[quaternions]]. Then the [[Pin group]] [[Pin(2)]] is [[isomorphism|isomorphic]] to the [[subgroup]] of the [[group of units]] $\mathbb{H}^\times$ of the [[quaternions]] which consists of this copy of [[SO(2)]] together with the multiplies of the imaginary quaternion $j$ with this copy of $SO(2)$: \begin{displaymath} Pin_-(2) \;\simeq\; S\big( \mathbb{C}\big) \;\cup\; j \cdot S\big( \mathbb{C}\big) \;\subset\; S(\mathbb{H}) \;\simeq\; Spin(3) \,. \end{displaymath} The binary dihedral group $2 D_{2n}$ is the [[subgroup]] of that generated from \begin{enumerate}% \item $a \coloneqq \exp\left( \pi i \tfrac{1}{n} \right) \in S(\mathbb{C}) \subset Pin_-(2) \subset Spin(3)$ \item $x \coloneqq j \in Pin_-(2) \subset Spin(3)$. \end{enumerate} It is manifest that these two generators satisfy the relations \begin{displaymath} a^{2n} = 1 \,, \phantom{AA} x^2 = a^n \; (= -1) \,, \phantom{AA} x^{-1} a x = a^{-1} \end{displaymath} and in fact these [[generators and relations]] fully determine $2 D_{2n}$, up to [[isomorphism]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{group_cohomology}{}\subsubsection*{{Group cohomology}}\label{group_cohomology} The [[group cohomology]] of the dihedral group is discussed for instance at \hyperlink{Groupprops}{Groupprops}. \hypertarget{as_part_of_the_ade_pattern}{}\subsubsection*{{As part of the ADE pattern}}\label{as_part_of_the_ade_pattern} [[!include ADE -- table]] \hypertarget{group_presentation}{}\subsubsection*{{Group presentation}}\label{group_presentation} The dihedral group $D_{2n}$ has a group presentation \begin{displaymath} \langle x,y : x^n=y^2=(xy)^2=1\rangle. \end{displaymath} From this it is easy to see that it is a [[semi-direct product]] of the $C_n$ generated by $x$ and the $C_2$ generated by $y$. The action of $y$ on $x$ is given by $\,^y x= x^{-1}$. It is a standard example considered in elementary [[combinatorial group theory]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{quaternion_group__and_triality}{}\subsubsection*{{Quaternion group $Q_8$ and triality}}\label{quaternion_group__and_triality} The first binary dihedral group $2 D_4$ is [[isomorphism|isomorphic]] to the [[quaternion group]] of order 8: \begin{displaymath} 2 D_4 (= Dic_2) \simeq Q_8 \,. \end{displaymath} In the [[ADE-classification]] this is the entry [[D4]]. [[!include character table of 2D4=Dic2=Q8]] \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[anti-cyclotomic extension]] \item [[dihedral homology]] \item [[group presentation]] \item [[Coxeter group]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Discussion in the context of the [[classification of finite rotation groups]] goes back to \begin{itemize}% \item [[Felix Klein]], chapter I.4 of \emph{Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade}, 1884, translated as \emph{Lectures on the Icosahedron and the Resolution of Equations of Degree Five} by George Morrice 1888, \href{https://archive.org/details/cu31924059413439}{online version} \end{itemize} Discussion in the context of [[equivariant cohomology theory]]: \begin{itemize}% \item [[John Greenlees]], \emph{Rational SO(3)-Equivariant Cohomology Theories}, in \emph{Homotopy methods in algebraic topology} (Boulder, CO, 1999), Contemp. Math. 271, Amer. Math. Soc. (2001) 99 (\href{http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.5444}{web}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Dihedral_group}{Dihedral group}} \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Dicyclic_group#Binary_dihedral_group}{Binary dihedral group}} \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Dicyclic_group}{Dicyclic group}} \item Groupprops, \emph{\href{https://groupprops.subwiki.org/wiki/Dicyclic_group}{Dicyclic group}} \item Groupprops, \emph{\href{https://groupprops.subwiki.org/wiki/Linear_representation_theory_of_dicyclic_groups}{Linear representation theory of dicyclic groups}} \item Groupprops, \emph{\href{http://groupprops.subwiki.org/wiki/Group_cohomology_of_dihedral_group:D8}{Group cohomology of dihedral group:D8}} \item GroupNames, \emph{\href{https://people.maths.bris.ac.uk/~matyd/GroupNames/dicyclic.html}{Dicyclic groups $Dic_n$}} \end{itemize} [[!redirects dihedral groups]] [[!redirects binary dihedral group]] [[!redirects binary dihedral groups]] [[!redirects dicyclic group]] [[!redirects dicyclic groups]] \end{document}