\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{dinatural transformation} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{special_cases}{Special cases}\dotfill \pageref*{special_cases} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{dinaturality_versus_extranaturality}{Dinaturality versus extranaturality}\dotfill \pageref*{dinaturality_versus_extranaturality} \linebreak \noindent\hyperlink{composition}{Composition}\dotfill \pageref*{composition} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \textbf{Dinatural transformations} are a generalization of ordinary [[natural transformations]] and also of [[extranatural transformations]]. The differences can be summarized thus: \begin{itemize}% \item In an ordinary \emph{natural transformation} $F\to G$, both $F$ and $G$ involved depend on some variable $x$ with the same variance (covariant or contravariant). \item In an \emph{extranatural transformation} $F\to G$, either $F$ depends on $x$ both covariantly \emph{and} contravariantly and $G$ does not depend on $x$ at all, or vice versa. \item In a \textbf{dinatural transformation} $F\to G$, both $F$ and $G$ can depend on $x$ both covariantly and contravariantly. \end{itemize} If the dependence of $F$ or $G$ on $x$ in a dinatural transformation is trivial, it reduces to an extranatural one. Similarly, if the contravariant (or, dually, the covariant) dependence of $F$ and $G$ on $x$ are trivial, it reduces to an ordinary natural one. Arguably, most dinatural transformations which arise in practice are ordinary or extranatural. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $F, G: C^{op} \times C \to D$ be functors. A \textbf{dinatural transformation} from $F$ to $G$, sometimes written \begin{displaymath} \alpha: F \stackrel{\bullet}{\to} G, \end{displaymath} consists of a collection of morphisms \begin{displaymath} \alpha_{c}: F(c, c) \to G(c, c) \end{displaymath} such that for every morphism $f: c \to c'$ in $C$, \begin{equation} G(c, f)\alpha_c F(f, c) = G(f, c')\alpha_{c'}F(c', f): F(c', c) \to G(c, c') \label{hexagon}\end{equation} If drawn out as a commutative diagram, this becomes a ``hexagon identity'': \begin{displaymath} \begin{array}{ccccccc} & & F(c,c) & \overset{\alpha_{c}}{\to} & G(c,c)\\ & \overset{\mathclap{F(f,c)}}{\nearrow} & & & & \overset{\mathclap{G(c,f)}}{\searrow}\\ F(c',c) & & & & & & G(c,c')\\ & \underset{\mathclap{F(c',f)}}{\searrow} & & & & \underset{\mathclap{G(f,c')}}{\nearrow}\\ & & F(c',c') & \underset{\alpha_{c'}}{\to} & G(c',c') \end{array}\,. \end{displaymath} \hypertarget{special_cases}{}\subsubsection*{{Special cases}}\label{special_cases} If $F$ and $G$ both factor through the projection $C^{op}\times C \to C$, then the notion reduces to an ordinary natural transformation, and similarly if they both factor through $C^{op}$. If $F$ factors through $C$ while $G$ factors through $C^{op}$, then we obtain a notion of natural transformation from a covariant functor to a contravariant one, and dually. If $G$ is constant, the hexagon identity reduces to the ``domain'' version of extranaturality, involving a commutative square of the form \begin{equation} \alpha_c F(f, c) = \alpha_{c'} F(c', f): F(c', c) \to G \label{domain}\end{equation} where $G$ is constant with respect to the argument $c$. Similarly, if $F$ is constant, it yields the ``codomain'' version with a commutative square of the form \begin{equation} G(c, f) \alpha_c = G(f, c')\alpha_{c'}: F \to G(c, c') \label{codomain}\end{equation} when $F$ is constant with respect to the argument $c$. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Of course, all ordinary natural transformations, and also all [[extranatural transformations]], are also dinatural ones. Here we will confine ourselves to examples that do not reduce to either of these. \begin{itemize}% \item Perhaps the most well known example is the [[Church numerals]]: for any category $C$, we have a class of dinatural transformations from the hom-functor $hom: C^{op}\times C\to Set$ \begin{displaymath} \hom(x, x) \stackrel{\alpha_n}{\to} \hom(x, x) \end{displaymath} defined by the rule $\alpha_n(f) = f^{(n)}$. \item Not every endo-dinatural-transformation of a hom-functor is of this form; several other examples are given in \hyperlink{PareRoman}{Pare-Roman}. For instance, if $C=FinSet$ then the operation sending each endomorphism to its [[eventual image]] is dinatural. \item The following example of a dinatural transformation from a covariant functor to a contravariant one is found in \hyperlink{DubucStreet}{Dubuc-Street} and attributed to [[Mac Lane]]. Let $C$ be the category of [[inner product spaces]] and isometries, and $D$ the category of [[vector spaces]] and linear transformations (all over a fixed [[field]]). Let $F:C\to D$ be the forgetful functor and let $G:C^{op}\to D$ be the functor sending each inner product space to its dual. Define $\alpha_V : F(V) \to G(V)$ to send $v\in V$ to the operation $\langle v,-\rangle$; then $\alpha$ is dinatural. \end{itemize} \hypertarget{dinaturality_versus_extranaturality}{}\subsection*{{Dinaturality versus extranaturality}}\label{dinaturality_versus_extranaturality} Many people who encounter the notion of dinaturality through the general definition (as in equation \eqref{hexagon}) have subsequent difficulty grokking it. It is the opinion of at least one author of this article ([[Todd Trimble]]), and it was certainly the opinion of Max Kelly, that this ``efficient'' definition is not the most useful or intuitive one. Rather, one may be better off grokking the separate squares \eqref{domain} and \eqref{codomain} -- that is, the notion of [[extranaturality]] -- and how they arise in practice. One could try to argue against that by pointing to dinatural transformations which do not reduce to extranatural ones. A counterargument, however, is that \emph{any} dinatural transformation between functors $F,G:C^{op}\times C\to D$ can be ``bent'' into domain extranaturality by defining \begin{displaymath} C^{op} \times C \stackrel{[F,G]}{\to} Set: (x, y) \mapsto G(x, y)^{F(y, x)}. \end{displaymath} Then a dinatural transformation $F\to G$ can be identified with an extranatural transformation from the constant $1$ (the terminal set) to $[F,G]$. Such tricks support the counterargument that the extra generality of the traditional definition is largely spurious, and not particularly helpful in terms of comprehension. A further argument for the relative importance of extranatural transformations over dinatural ones is that extranatural transformations can be defined for any sort of [[enriched categories]], whereas dinatural ones (including the other special case of natural transformations from covariant functors to contravariant ones) only make sense when the enriching category is [[cartesian monoidal category|cartesian]]. \hypertarget{composition}{}\subsection*{{Composition}}\label{composition} Dinatural transformations cannot, in general, be composed with each other, although there are certain circumstances when they can be. \begin{itemize}% \item One such case is when certain squares are pushouts or pullbacks. \item Of course, ordinary natural transformations can be composed. \item In fact, there is a category whose objects consist of both covariant functors $C\to D$ and contravariant ones $C^{op}\to D$, and whose morphisms are dinatural transformations. \end{itemize} In general, what we can say is that for two fixed categories $C$ and $D$, the functors $C^{op}\times C^ \to D$ and the dinatural transformations between them form a [[paracategory]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[homotopy]] \item [[contravariant functor]], [[2-category with contravariance]] \item [[transfor]] \begin{itemize}% \item [[natural transformation]] \begin{itemize}% \item [[extranatural transformation]], \textbf{dinatural transformation} \end{itemize} \item [[pseudonatural transformation]] \item [[lax natural transformation]] \item [[2-dinatural transformation]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Eduardo Dubuc]] and [[Ross Street]], \emph{Dinatural transformations}, Reports of the Midwest Category Seminar IV, Lecture Notes in Math., vol. 137, Springer, Berlin (1970), pp. 126--137 \end{itemize} \begin{itemize}% \item [[Robert Paré]] and Leopoldo Rom\'a{}n, \emph{Dinatural numbers}, \href{http://www.sciencedirect.com/science/article/pii/S0022404997000364}{JPAA} \end{itemize} Here is a blog post inspired by the above discussion that discusses these concepts in the context of the programming language Haskell: \begin{itemize}% \item Dan Piponi, \href{http://blog.sigfpe.com/2009/03/dinatural-transformations-and-coends.html}{Dinatural transformations and coends} \end{itemize} [[!redirects dinaturality]] [[!redirects dinatural transformations]] \end{document}