\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{direct category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{standard_definition}{Standard definition}\dotfill \pageref*{standard_definition} \linebreak \noindent\hyperlink{direct_versus_oneway_categories}{Direct versus one-way categories}\dotfill \pageref*{direct_versus_oneway_categories} \linebreak \noindent\hyperlink{allowing_automorphisms}{Allowing automorphisms}\dotfill \pageref*{allowing_automorphisms} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{model_structures}{Model structures}\dotfill \pageref*{model_structures} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{inside_the_simplex_category}{Inside the simplex category}\dotfill \pageref*{inside_the_simplex_category} \linebreak \noindent\hyperlink{the_direct_category_of_corollas}{The direct category of corollas}\dotfill \pageref*{the_direct_category_of_corollas} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{direct category} is a [[category]] in which the morphisms only go in ``one direction.'' A direct category can be thought of as a category of [[geometric shapes for higher structures]] which includes only the ``inclusions of faces,'' not any ``degeneracy'' maps. (The more general notion of [[Reedy category]] can also include degeneracies.) The objects of a direct category admit no nontrivial automorphisms, but the notion can also be generalized to allow for such automorphisms. Alternately, a direct category can be thought of as a combinatorial representation of a \emph{single} geometric shape. In this case, each object is a ``face'' and each morphism is the inclusion of a lower-dimensional face in a higher-dimensional one. If $D$ is a direct category regarded as a category \emph{of} geometric shapes, then each $d\in D$ can be represented by the [[slice category]] $D/d$, a direct category regarded as a single geometric shape. (In general, however, $D/d$ may admit more automorphisms than $d$, so it may need to be equipped with a ``labeling'' or ``orientation'' to truly recapture the shape $d$.) Finally, a direct category can also be thought of as a [[categorification]] of the notion of [[well-founded relation]] from [[posets]] to [[categories]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{standard_definition}{}\subsubsection*{{Standard definition}}\label{standard_definition} A category $D$ is a \textbf{direct category} if the following \emph{equivalent} conditions are satisfied. \begin{itemize}% \item $D$ contains no infinite descending chains of nonidentity morphisms $\cdots \to\cdot \to\cdot\to\cdot$ (including cycles of length $\gt 0$). \item The relation $a\prec b$ on $ob(D)$ defined by ``there exists a nonidentity morphism from $a$ to $b$'' is [[well-founded relation|well-founded]]. \item There exists a function $d\colon ob(D)\to Ord$, where $Ord$ is the class of [[ordinals]], such that every nonidentity morphism of $D$ raises the degree. \item There exists an identity-reflecting functor $d : D\to \mathbf{Ord}$, where $\mathbf{Ord}$ is the large poset of ordinals viewed as a category. \item $D$ is a [[Reedy category]] (in particular an \emph{[[elegant Reedy category]]}) in which $D_-$ consists only of identity maps (or equivalently $D_+$ is all of $D$). \end{itemize} In particular, a [[poset]] is a direct category just when its strict order relation $\lt$ is well-founded. Thus, direct categories can be seen as a categorification of well-founded relations. If $D^{op}$ is a direct category, then we say that $D$ is an \textbf{inverse category}. \hypertarget{direct_versus_oneway_categories}{}\subsubsection*{{Direct versus one-way categories}}\label{direct_versus_oneway_categories} Of course, a direct category can have no nonidentity [[endomorphisms]], since any such endomorphism would be a cycle of length 1. A category with this property is sometimes called a \textbf{one-way category}. A direct category is also necessarily [[skeleton|skeletal]], since any nonidentity isomorphism and its inverse would form a cycle of length 2. The notion of generalized direct category, below, relaxes this requirement. Conversely, a skeletal one-way category can have no cycles of nonidentity morphisms of any finite length, since by the one-way property all morphisms in such a cycle would be isomorphisms, hence endomorphisms by skeletality, and hence identities by the one-way property. Since any infinite chain in a [[finite category]] contains a cycle, we see that \begin{itemize}% \item A finite category is a direct category if and only if it is one-way and skeletal. \end{itemize} Since this condition is self-dual, we also see that \begin{itemize}% \item A finite category is direct if and only if it is inverse. \end{itemize} An infinite category can be one-way and skeletal without being direct or inverse, such as the [[poset]] $\mathbb{Z}$ with its usual ordering. However, if it additionally has \textbf{finite fan-out}, meaning that for each object $x$ there are altogether only finitely many morphisms with [[source]] $x$ (and arbitrary target), then it must be an inverse category, for any infinite non-cyclic chain would induce infinitely many distinct morphisms out of any of its objects by composition. In [[FOLDS]], skeletal one-way categories with finite fan-out are called \textbf{simple categories} and used as signatures; thus \begin{itemize}% \item Any simple category (in the sense of FOLDS) is an inverse category. \end{itemize} However, a category can be inverse without having finite fan-out. Let $S$ be an infinite set and consider the poset $S \cup \{\infty\}$, with $S$ having the discrete ordering (no nonidentity arrows) and $\infty$ being less than every element of $S$. This does not have finite fan-out, since $\infty$ is the source of infinitely many distinct arrows, but it is inverse, since there are clearly no chains of nonidentity arrows of length $\gt 1$. \hypertarget{allowing_automorphisms}{}\subsubsection*{{Allowing automorphisms}}\label{allowing_automorphisms} Some categories of geometric shapes, such as the [[tree category]] $\Omega$ and the [[cycle category]] $\Lambda$, include automorphisms of their objects. By analogy with the notion of [[generalized Reedy category]], we can define $D$ to be a \textbf{generalized direct category} by replacing ``identity'' with ``isomorphism'' in the above definition. Thereby we obtain the following equivalent conditions for $D$ to be a generalized direct category. \begin{itemize}% \item $D$ contains no infinite descending chains of noninvertible morphisms $\cdots \to\cdot \to\cdot\to\cdot$. \item The relation $a\prec b$ on $ob(D)$ defined by ``there exists a noninvertible morphism from $a$ to $b$'' is [[well-founded relation|well-founded]]. \item There exists a function $d\colon ob(D)\to Ord$, where $Ord$ is the class of [[ordinals]], such that every noninvertible morphism of $D$ raises the degree. \item $D$ is a [[generalized Reedy category]] in which $D_-$ consists only of isomorphisms (or equivalently $D_+$ is all of $D$). \end{itemize} Of course, $\Omega$ and $\Lambda$ are not generalized direct categories themselves, since they have degree-lowering degeneracies as well, but their full subcategories of coface maps are generalized-direct. More generally: \begin{itemize}% \item If $R$ is any generalized Reedy category, then $R_+$ is a generalized direct category. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{model_structures}{}\subsubsection*{{Model structures}}\label{model_structures} Every direct category (and every inverse category) is in particular a [[Reedy category]], in fact an \emph{[[elegant Reedy category]]}. Therefore whenever $M$ is a [[model category]] there is a [[Reedy model structure]] on $M^D$. In the case of direct and inverse categories, these model structures are even easier to describe, since either the latching or the matching objects are degenerate. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{inside_the_simplex_category}{}\subsubsection*{{Inside the simplex category}}\label{inside_the_simplex_category} The [[wide subcategory]] $\Delta_+$ of the [[simplex category]] on the injective map (the co-face maps) is direct. Its [[presheaves]] are [[semi-simplicial objects]]/[[semi-simplicial sets]] as opposed to [[simplicial objects]]/[[simplicial sets]]. \hypertarget{the_direct_category_of_corollas}{}\subsubsection*{{The direct category of corollas}}\label{the_direct_category_of_corollas} We now define a ``[[universal property|universal]]'' generalized direct category which contains ``all'' [[geometric shapes for higher structures]]. This is based on (\hyperlink{Borisov}{Borisov}). A functor $f\colon D\to E$ between generalized direct categories is called a \textbf{dependency} if it is equivalent to the inclusion of a [[sieve]], or equivalently if it is a [[fully faithful functor]] and a [[discrete fibration]] in the generalized sense of Street. If $D$ and $E$ are [[skeleton|skeletal]] (as they must be if they are \emph{non-generalized} direct categories), then any dependency must be isomorphic to the inclusion of a sieve. One also usually works only with skeletal generalized direct categories, although the definition does not require it. If we regard direct categories as a categorification of well-founded relations, then dependencies are a categorification of injective [[simulation]]s, i.e. the inclusions of initial segments. Define a \textbf{corolla} to be a generalized direct category with a [[weak limit|weakly]] [[terminal object]]; we call this object the \textbf{vertex} of the corolla. If a generalized direct category is finite and skeletal, then it is a corolla if and only if it has a unique object which is not the source of any noninvertible morphism. Corollas are the direct categories which it is most natural to regard as \emph{single} geometric shapes; other direct categories are more like ``pasting diagrams'' of geometric shapes. Let $Corolla$ be the category of [[small category|small]] skeletal corollas and dependencies. \begin{theorem} \label{UnivDirect}\hypertarget{UnivDirect}{} $Corolla$ is a (large) generalized direct category. \end{theorem} \begin{proof} Suppose that $\cdots \overset{d_2}{\to} C_2 \overset{d_1}{\to} C_1 \overset{d_0}{\to} C_0$ is a descending chain of noninvertible dependencies. Any dependency whose target is a corolla and whose image contains the vertex must be an equivalence, and hence an isomorphism if the corollas are skeletal; thus none of the dependencies $C_{n+1} \to C_{n}$ can have the vertex in their image. Let $c_n\in C_0$ be the image of the vertex $\star_n \in C_n$ under the composite $d_0\circ \dots \circ d_{n-1}$. Then we have a noninvertible morphism $c_{n+1} \to c_n$ for each $n$, arising from some map $d_n(\star_{n+1}) \to \star_n$ which exists since $\star_n$ is weakly terminal. This is a contradiction, since $C_0$ is a generalized direct category. \end{proof} Of course, the same is true for any subcategory of $Corolla$. In particular, it is very natural to consider only the category $FinCorolla$ of \emph{finite} corollas, which is moreover essentially small (though not finite). We next observe that $Corolla$ is the ``universal'' generalized direct category in a certain sense. Let $D$ be any generalized direct category; then the slice category $D/d$ is a corolla for any $d\in D$. Moreover, if $f\colon d\to d'$ is a morphism in $D$ which is [[monomorphism|monic]], then the ``composition'' functor $\Sigma_f\colon D/d \to D/d'$ is a dependency. Thus, if every morphism in $D$ is monic, we have a functor $ext_D\colon D \to Corolla$ with $ext_D(d)= D/d$ and $ext_D(f)=\Sigma_f$. Now if $f,g\colon d\to d'$ are parallel morphisms and $\Sigma_f=\Sigma_g$, then in particular $f = \Sigma_f(id_d) = \Sigma_g(id_d) = g$; thus $ext_D$ is [[faithful functor|faithful]]. Therefore, if $D$ is a direct category in which all morphisms are monic, and in which $D/d \cong D/d'$ implies $d=d'$ (which includes many examples), then $D$ is equivalent to a [[subcategory]] of $Corolla$. This subcategory of $Corolla$ is usually \emph{not} full, however. In particular, for $d\in D$ the corolla $D/d$ will generally admit more automorphisms than $d$ has in $D$. For instance, if $D$ is a non-generalized direct category, then $d$ has no nontrivial automorphisms, whereas $D/d$ generally will. In particular, if the objects of $D$ have any sort of ``orientation'' or ``labeling,'' then this information is forgotten by the functor $ext_D$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[test category]] \item [[filtered category]], [[sifted category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Dennis Borisov]], \emph{Comparing definitions of weak higher categories, I} (\href{http://arxiv.org/abs/0909.2534}{arXiv:0909.2534}) \end{itemize} \begin{itemize}% \item [[Clark Barwick]], \emph{On Reedy Model Cateogires} (\href{https://arxiv.org/abs/0708.2832}{arXiv:0708.2832}) \end{itemize} [[!redirects direct category]] [[!redirects direct categories]] [[!redirects inverse category]] [[!redirects inverse categories]] [[!redirects one-way category]] [[!redirects one-way categories]] [[!redirects category with finite fan-out]] [[!redirects categories with finite fan-out]] [[!redirects categories with finite fan-outs]] [[!redirects simple category]] [[!redirects simple categories]] \end{document}