\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{direct sum of vector bundles} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{linear_algebra}{}\paragraph*{{Linear algebra}}\label{linear_algebra} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{whitney_summands_of_trivial_vector_bundles}{Whitney summands of trivial vector bundles}\dotfill \pageref*{whitney_summands_of_trivial_vector_bundles} \linebreak \noindent\hyperlink{characteristic_classes_of_whitney_sums}{Characteristic classes of Whitney sums}\dotfill \pageref*{characteristic_classes_of_whitney_sums} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $E_1, E_2 \to X$ two [[vector bundles]], their [[direct sum]] over $X$, also called their \textbf{Whitney sum}, is the vector bundle $E_1 \oplus E_2 \to X$ whose [[fiber]] over any $x \in X$ is the [[direct sum]] of vector spaces of the fibers of $E_1$ and $E_2$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{DirectSumOfTopologicalVectorBundlesViaTotalspaces}\hypertarget{DirectSumOfTopologicalVectorBundlesViaTotalspaces}{} \textbf{([[direct sum]] of [[topological vector bundles]] via total spaces)} Let \begin{enumerate}% \item $X$ be a [[topological space]], \item $E_1 \overset{\pi_1}{\to} X$ and $E_2 \overset{\pi_2}{\to} X$ two [[topological vector bundles]] over $X$. \end{enumerate} Then the \emph{direct sum of vector bundles} $E_1 \oplus_X E_2 \to E$ is the [[topological vector bundle]] whose total space is the [[topological subspace]] \begin{displaymath} E_1 \oplus_X E_2 \;\coloneqq\; \left\{ (v_1, v_2) \in E_1 \times E_2 \,\vert\, \pi_1(v_1) = \pi_2(v_2) \right\} \;\subset\; E_1 \times E_2 \end{displaymath} of the [[product topological space]] of the two total spaces, and whose projection map is \begin{displaymath} \itexarray{ E_1 \oplus_X E_2 &\overset{\phantom{AA}\pi\phantom{AA}}{\longrightarrow}& X \\ (v_1,v_2) &\overset{\phantom{AAA}}{\mapsto}& \pi_1(v_1) = \pi_2(v_2) } \,. \end{displaymath} For $x \in X$ the vector space structure on the [[fibers]] \begin{displaymath} (E_1 \oplus E_2)_x \simeq (E_1)_x \oplus (E_2)_x \end{displaymath} is the one on the [[direct sum]] of [[vector spaces]]. \end{defn} \begin{defn} \label{DirectSumOfTopologicalVectorBundlesViaTransitionFunctions}\hypertarget{DirectSumOfTopologicalVectorBundlesViaTransitionFunctions}{} \textbf{([[direct sum]] of [[topological vector bundles]] via [[transition functions]])} Let $X$ be a [[topological space]], and let $E_1 \to X$ and $E_2 \to X$ be two [[topological vector bundles]] over $X$. Let $\{U_i \subset X\}_{i \in I}$ be an [[open cover]] with respect to which both vector bundles locally trivialize (this always exists: pick a [[local trivialization]] of either bundle and form the joint [[refinement]] of the respective [[open covers]] by [[intersection]] of their patches). Let \begin{displaymath} \left\{ (g_1)_{i j} \colon U_i \cap U_j \to GL(n_1) \right\} \phantom{AAA} \text{and} \phantom{AAA} \left\{ (g_2)_{i j} \colon U_i \cap U_j \longrightarrow GL(n_2) \right\} \end{displaymath} be the [[transition functions]] of these two bundles with respect to this cover. For $i, j \in I$ write \begin{displaymath} \itexarray{ (g_1)_{i j} \oplus (g_2)_{i j} &\colon& U_i \cap U_j &\longrightarrow& GL(n_1 + n_2) \\ && x &\overset{\phantom{AAA}}{\mapsto}& \left( \itexarray{ (g_1)_{i j}(x) & 0 \\ 0 & (g_2)_{i j}(x) } \right) } \end{displaymath} be the pointwise [[direct sum]] of these transition functions Then the \emph{direct sum bundle} $E_1 \oplus E_2$ is the one glued from this direct sum of the transition functions (by \href{topological+vector+bundle#TopologicalVectorBundleFromCechCocycle}{this construction}): \begin{displaymath} E_1 \oplus E_2 \;\coloneqq\; \left( \left( \underset{i}{\sqcup} U_i \right) \times \left( \mathbb{R}^{n_1 + n_2} \right) \right)/ \left( \left\{ (g_1)_{i j} \oplus (g_2)_{i j} \right\}_{i,j \in I} \right) \,. \end{displaymath} \end{defn} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{DirectSumOnDisjointUnionSpace}\hypertarget{DirectSumOnDisjointUnionSpace}{} Let $X$ and $Y$ be [[topological spaces]], and write $X \sqcup Y$ for their [[disjoint union space]]. Then every [[topological vector bundle]] on $X \sqcup Y$ is the direct sum of a vector bundle that has [[rank of a vector bundle|rank]] zero on $Y$ and one that has rank zero on $X$. More explicitiy: let \begin{displaymath} i_X \colon Vect(X) \longrightarrow Vect(X \sqcup Y) \end{displaymath} and \begin{displaymath} i_Y \colon Vect(Y) \longrightarrow Vect(X \times Y) \end{displaymath} be the operations of extending a vector bundle on the other [[connected component]] by a rank-0 vector bundle, then \begin{displaymath} Vect(X) \times Vect(Y) \underoverset{\simeq}{ i_X \oplus_{(X \sqcup Y)} i_Y }{\longrightarrow} Vect(X \sqcup Y) \end{displaymath} is an [[isomorphism]] of [[isomorphism classes]] of vector bundles (and an [[equivalence of categories]] of [[Vect(X)|categories of vector bundles]] before passing to isomorphism classes). \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{whitney_summands_of_trivial_vector_bundles}{}\subsubsection*{{Whitney summands of trivial vector bundles}}\label{whitney_summands_of_trivial_vector_bundles} \begin{prop} \label{TopologicalSubBundlesOverParacompactHausdorffSpacesAreDirectSummands}\hypertarget{TopologicalSubBundlesOverParacompactHausdorffSpacesAreDirectSummands}{} \textbf{(sub-bundles over [[paracompact spaces]] are [[direct sum of vector bundles|direct summands]])} Let \begin{enumerate}% \item $X$ be a [[paracompact Hausdorff space]], \item $E \to X$ a [[topological vector bundle]]. \end{enumerate} Then every vector subbundle $E_1 \hookrightarrow E$ is a direct vector bundle summand, in that there exists another vector subbundle $E_2 \hookrightarrow E$ such that their direct sum of vector bundles (def. \ref{DirectSumOfTopologicalVectorBundlesViaTotalspaces}) is $E$ \begin{displaymath} E_1 \oplus E_2 \simeq E \,. \end{displaymath} \end{prop} (\hyperlink{Hatcher}{e.g. Hatcher, prop. 1.3}) \begin{proof} Since $X$ is assumed to be paracompact Hausdorff, there exists a [[inner product on vector bundles]] \begin{displaymath} \langle -,-\rangle \;\colon\; E \oplus_X E \longrightarrow X \times \mathbb{R} \end{displaymath} (by \href{inner+product+of+vector+bundles#ExistenceOfInnerProductOfTopologicalVectorBundlesOverParacompactHausdorffSpaces}{this prop.}). This defines at each $x \in X$ the [[orthogonal complement]] $(E'_x)^\perp \subset E_x$ of $E'_x \hookrightarrow E$. The [[subspace]] of these orthogonal complements is readily checked to be a [[topological vector bundle]] $(E')^\perp \to X$. Hence by construction we have \begin{displaymath} E \;\simeq\; E' \oplus_X (E')^\perp \,. \end{displaymath} \end{proof} \begin{prop} \label{OverCompactHausdorffSpacesEveryTopologicalVectorBundleIsDirectSummandOfATrivialBundle}\hypertarget{OverCompactHausdorffSpacesEveryTopologicalVectorBundleIsDirectSummandOfATrivialBundle}{} \textbf{(over [[compact Hausdorff spaces]] every vector bundle is [[direct sum of vector bundles|direct summand]] of a trivial bundle)} Let \begin{enumerate}% \item $X$ be a [[compact Hausdorff space]]; \item $E \to X$ a [[topological vector bundle]]. \end{enumerate} Then there exists another topological vector bundle $\tilde E \to X$ such that the direct sum of vector bundles (def. \ref{DirectSumOfTopologicalVectorBundlesViaTotalspaces}) of the two is a trivial vector $X \times \mathbb{R}^n$: \begin{displaymath} E \oplus \tilde E \;\simeq\; X \times \mathbb{R}^n \,. \end{displaymath} \end{prop} (e.g. \hyperlink{Hatcher}{Hatcher, prop. 1.4}, \hyperlink{Friedlander}{Friedlander, ptop. 3.1}) \begin{proof} Let $\{U_i \subset X\}_{i \in I}$ be an [[open cover]] of $X$ over which $E \to X$ has a [[local trivialization]] \begin{displaymath} \left\{ \phi_i \;\colon\; U_i \times \mathbb{R}^n \overset{\simeq}{\longrightarrow} E\vert_{U_i} \right\}_{i \in I} \,. \end{displaymath} By compactness of $X$, there is a [[finite cover|finite sub-cover]], hence a [[finite set]] $J \subset I$ such tat \begin{displaymath} \{U_i \subset X\}_{i \in J \subset I} \end{displaymath} is still an open cover over which $E$ trivializes. Since [[paracompact Hausdorff spaces equivalently admit subordinate partitions of unity]] there exists a [[partition of unity]] \begin{displaymath} \left\{ f_i \;\colon\; X \to [0,1] \right\}_{i \in J} \end{displaymath} with [[support]] $supp(f_i) \subset U_i$. Hence the functions \begin{displaymath} \itexarray{ E\vert_{U_i} &\overset{\phantom{AAAA}}{\longrightarrow}& U_i \times \mathbb{R}^n \\ v &\overset{\phantom{AAA}}{\mapsto}& f_i(x) \cdot \phi_i^{-1}(v) } \end{displaymath} extend by 0 to vector bundle homomorphism of the form \begin{displaymath} f_i \cdot \phi^{-1}_i \;\colon\; E \longrightarrow X \times \mathbb{R}^n \,. \end{displaymath} The finite pointwise [[direct sum]] of these yields a vector bundle homomorphism of the form \begin{displaymath} \underset{i \in J}{\oplus} f_i \cdot \phi_i \;\colon\; E \longrightarrow X \times \left( \underset{i \in J}{\oplus} \mathbb{R}^n \right) \simeq X \times \mathbb{R}^{n \dot {\vert J\vert}} \,. \end{displaymath} Observe that, as opposed to the single $f_i \cdot \phi^{-1}_i$, this is a fiber-wise injective, because at each point at least one of the $f_i$ is non-vanishing. Hence this is an injection of $E$ into a trivial vector bundle. With this the statement follows by prop. \ref{TopologicalSubBundlesOverParacompactHausdorffSpacesAreDirectSummands}. \end{proof} \begin{remark} \label{}\hypertarget{}{} Prop. \ref{OverCompactHausdorffSpacesEveryTopologicalVectorBundleIsDirectSummandOfATrivialBundle} is key for the construction of [[topological K-theory]] groups on compact Hausdorff spaces. \end{remark} Remark : Let $E_1\rightarrow M$ and $E_2\rightarrow M$ be vector bundles over $M$. This gives product map $E_1\times E_2\rightarrow M\times M$ which is still a vector bundle. Consider diagonal map $d:M\rightarrow M\times M$ given by $m\mapsto (m,m)$. The Whitney sum of $E_1\rightarrow M$ and $E_2\rightarrow M$ is the pull back of $E_1\times E_2\rightarrow M\times M$ along the diagonal map $d:M\rightarrow M\times M$ which is denoted by $E_1\oplus E_2\rightarrow M$. \hypertarget{characteristic_classes_of_whitney_sums}{}\subsubsection*{{Characteristic classes of Whitney sums}}\label{characteristic_classes_of_whitney_sums} \begin{prop} \label{EulerClassOfWhitneySumIsCupProductOfEulerClasses}\hypertarget{EulerClassOfWhitneySumIsCupProductOfEulerClasses}{} \textbf{([[Euler class]] takes [[Whitney sum]] to [[cup product]])} The Euler class of the [[Whitney sum]] of two [[orthogonal group|oriented]] [[real vector bundles]] to the [[cup product]] of the separate Euler classes: \begin{displaymath} \chi( E \oplus F ) \;=\; \chi(E) \smile \chi(F) \,. \end{displaymath} \end{prop} For details see at [[Euler class]], \href{Euler+class#EulerClassOfWhitneySumIsCupProductOfEulerClasses}{this Prop.}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[inner product on vector bundles]] \item [[tensor product of vector bundles]], [[external tensor product of vector bundles]], [[dual vector bundle]], \item [[tensor category]] \item [[Stiefel-Whitney class]] \item [[virtual vector bundle]], [[topological K-theory]] \item [[framed manifold]], [[Thom spectrum]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Discussion with an eye towards [[topological K-theory]] is in \begin{itemize}% \item [[Max Karoubi]], \emph{K-theory. An introduction}, Grundlehren der Mathematischen Wissenschaften \textbf{226}, Springer 1978. xviii+308 pp. \item [[Allen Hatcher]], section 1.1 of \emph{Vector bundles and K-Theory}, (partly finished book) \href{http://www.math.cornell.edu/~hatcher/VBKT/VBpage.html}{web} \end{itemize} and with an eye towards [[algebraic K-theory]] in \begin{itemize}% \item [[Eric Friedlander]], \emph{An introduction to K-theory} (emphasis on [[algebraic K-theory]]), 2007 (\href{http://users.ictp.it/~pub_off/lectures/lns023/Friedlander/Friedlander.pdf}{pdf}) \end{itemize} [[!redirects Whitney sum]] [[!redirects direct sums of vector bundles]] \end{document}