\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{directed limit} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{limits_and_colimits}{}\paragraph*{{Limits and colimits}}\label{limits_and_colimits} [[!include infinity-limits - contents]] \hypertarget{directed_limits}{}\section*{{Directed limits}}\label{directed_limits} \noindent\hyperlink{abstract_definition}{Abstract definition}\dotfill \pageref*{abstract_definition} \linebreak \noindent\hyperlink{terminology}{Terminology}\dotfill \pageref*{terminology} \linebreak \noindent\hyperlink{explicit_definition}{Explicit definition}\dotfill \pageref*{explicit_definition} \linebreak \noindent\hyperlink{in_algebra}{In algebra}\dotfill \pageref*{in_algebra} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \hypertarget{abstract_definition}{}\subsection*{{Abstract definition}}\label{abstract_definition} A \textbf{directed limit} (or \textbf{codirected limit}) is a [[limit]] $\underset{\leftarrow}\lim F$ of a functor $F\colon J \to C$ whose [[source]] [[category]] $J$ is a downward-[[direction|directed set]]. More generally, for $\kappa$ a [[cardinal number|regular cardinal]] say that a \textbf{$\kappa$-directed set} $J$ is a [[poset]] in which every subset of cardinality $\lt \kappa$ has an upper bound. Then a limit over a functor $J \to C$ is called \textbf{$\kappa$-directed limit}. If the directed set is an [[ordinal]], one speaks of a [[sequential limit]]. The [[duality|dual]] notion is that of [[directed colimit]], a [[colimit]] of a functor whose source is a upward-directed set. \hypertarget{terminology}{}\subsection*{{Terminology}}\label{terminology} Note that the terminology varies. Especially in algebra, a directed limit may be called a `[[projective limit]]' or `[[inverse limit]]'; it's also possible to distinguish these so that an inverse limit may have an arbitrary (possibly undirected) [[partial order|poset]] as its source. On the other hand, both terms are often used for arbitrary [[limits]] as an alternative to the `co-' method of distinction. (The corresponding dual terms are `[[inductive limit]]' and `[[direct limit]]', with no `co-' even though these are [[colimits]].) Directed (co)limits were studied in algebra (as projective and inductive limits) before the general notion of limit in category theory. The elementary definition still seen there follows. \hypertarget{explicit_definition}{}\subsection*{{Explicit definition}}\label{explicit_definition} Let $C$ be a [[category]]. A \textbf{projective system} in $C$ consists of a [[direction|directed set]] $I$ (which we will write directed-upward as usual), a family $(A_i)_{i: I}$ of objects of $C$, and a family $(f_{ij}: A_j \to A_i)_{i \leq j: I}$ of morphisms, such that: * $f_{ii}: A_i \to A_i$ is the [[identity morphism]] on $A_i$; * $f_{ik}: A_k \to A_i$ is the [[composition|composite]] $f_{ij} \circ f_{jk}$. Then a \textbf{projective cone} of this projective system is an object $X$ and a family of \textbf{projections} $\pi_i: X \to A_i$ such that \begin{displaymath} \pi_i = f_{ij} \circ \pi_j . \end{displaymath} Finally, a \textbf{projective limit} of the projective system is a projective cone $\underset{\leftarrow}\lim_i A_i$ (where both $f$ and $\pi$ are suppressed in the notation, each in its own way) which is [[universal property|universal]] in that, given any projective cone $X$, there exists a unique morphism $u\colon X \to \underset{\leftarrow}\lim_i A_i$ such that \begin{displaymath} \pi_i = \pi_i \circ u \end{displaymath} (where the left-hand $\pi$ is from the cone $X$ and the right-hand $\pi$ is from the limit). Notice that a projective system in $C$ consists precisely of a directed set $I$ and a [[contravariant functor]] from $I$ (thought of as a category) to $C$, while a projective cone or limit of such a projective system is precisely a cone or limit of the corresponding functor. So this is a special case of [[limit]]. As with other limits, a projective limit, if any exists at all, is unique up to a given isomorphism, so we speak of [[generalized the|the]] projective limit of a given projective system. \hypertarget{in_algebra}{}\subsection*{{In algebra}}\label{in_algebra} A projective limit in algebra is usually defined as a [[subobject|subalgebra]] of a [[cartesian product]]. To be precise, $\underset{\leftarrow}\lim_i A_i$ consists of those elements $(x_i)_{i: I}$ of $\prod_{i: I} A_i$ such that: \begin{displaymath} x_i = f_ij(x_j) . \end{displaymath} This can be seen as a special case of the construction of an arbitrary limit out of [[product]]s and [[equalizer]]s. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Directed limits over the codirected set $(\mathbb{N},\geq)$ of [[natural numbers]], the [[tower]]-diagram, \begin{displaymath} \itexarray{ && && \lim_{\leftarrow_n} X(n) && \\ && &\swarrow& \downarrow & \searrow& \\ \cdots & \to & X(2) & \to & X(1) & \to & X(0) } \end{displaymath} are extremely common. Classical examples occur in the theory of [[Postnikov towers]] and also in the definition of the [[solenoids]]. A [[ring]] $K [ [ x ] ]$ of formal [[power series]] (for $K$ a [[field]]) is a projective limit of the rings $K[x]/x^n$ (for $n$ a [[natural number]]). Here, $C$ is the category of rings, $I$ is the directed set of natural numbers, $A_i = K[x]/x^i$, and $f_{ij}: A_j \to A_i$ is induced by the quotient map $K[x] \to K[x]/x^i$ (which must be proved well defined on $K[x]/x^j$ for $i \leq j$). Similarly, a ring $\mathbf{Z}_p$ of $p$-[[adic integer]]s (for $p$ a [[prime number]]) is a projective limit of the rings $\mathbf{Z}/p^n$. A set of infinite [[sequences]] is a projective limit of sets of [[list|finite sequences]] (which, at the level of [[sets]], includes the above examples). [[!redirects directed limit]] [[!redirects directed limits]] [[!redirects codirected limit]] [[!redirects codirected limits]] \end{document}