\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{discrete object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{discrete_and_concrete_objects}{}\paragraph*{{Discrete and concrete objects}}\label{discrete_and_concrete_objects} [[!include discrete and concrete objects - contents]] \hypertarget{modalities_closure_and_reflection}{}\paragraph*{{Modalities, Closure and Reflection}}\label{modalities_closure_and_reflection} [[!include modalities - contents]] \hypertarget{discrete_objects}{}\section*{{Discrete objects}}\label{discrete_objects} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{discrete_geometric_spaces}{Discrete geometric spaces}\dotfill \pageref*{discrete_geometric_spaces} \linebreak \noindent\hyperlink{local_toposes}{Local toposes}\dotfill \pageref*{local_toposes} \linebreak \noindent\hyperlink{Fibrations}{Topological categories, fibrations, and final lifts}\dotfill \pageref*{Fibrations} \linebreak \noindent\hyperlink{in_simplicial_sets}{In simplicial sets}\dotfill \pageref*{in_simplicial_sets} \linebreak \noindent\hyperlink{discrete_cellularcategorical_structures}{Discrete cellular/categorical structures}\dotfill \pageref*{discrete_cellularcategorical_structures} \linebreak \noindent\hyperlink{ExamplesInInfinityToposes}{In $\infty$-toposes}\dotfill \pageref*{ExamplesInInfinityToposes} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{discrete space} is, in general, an object of a [[concrete category]] $Sp$ of spaces that is [[free functor|free]] on its own underlying set. More generally, the notion can be applied relative to any [[forgetful functor]]. \textbf{Note:} \emph{This page is about the ``[[cohesive]]'' or ``[[topology|topological]]'' notion of discreteness. In [[2-category theory]] the term ``discrete object'' is also often used for [[n-truncated object|0-truncated objects]]. For this usage, see \emph{[[discrete morphism]]} instead.} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A discrete space must, in particular, be a [[free object]] for the forgetful functor $U\colon Sp\to Set$, i.e. in the image of its [[adjoint functor|left adjoint]] $F: Set \to Sp$. However, this is not sufficient for it to be free on its \emph{own} underlying set; we must also require that the counit $F U X\to X$ be an [[isomorphism]]. Thus, we say that $U\colon Sp \to Set$ (or more generally, any functor) \textbf{has discrete spaces} or \textbf{discrete objects} if it has a [[fully faithful functor|fully faithful]] left adjoint. This ensures that the functor \begin{displaymath} Set \stackrel{F}\to Sp \stackrel{U}\to Set \end{displaymath} is ([[natural isomorphism|naturally isomorphic]] to) the [[identity functor]] on [[Set]]. This is true, for example, if $Sp$ is [[Top]], [[Diff]], [[Loc]], etc. Assuming that $U$ is [[faithful functor|faithful]] (as it is when $Sp$ is a concrete category), we can characterise a discrete space $X$ as one such that every function from $X$ to $Y$ (for $Y$ any space) is a morphism of spaces. (More precisely, this means that every function from $U(X)$ to $U(Y)$ is the image under $U$ of a morphism from $X$ to $Y$.) The dual notion is a [[codiscrete object]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{discrete_geometric_spaces}{}\subsubsection*{{Discrete geometric spaces}}\label{discrete_geometric_spaces} The best known example is a discrete [[topological space]], that is one, $X$, in which all subsets of $X$ are [[open subset|open]] in the topology. This is the [[discrete topology]] on $X$. If $X$ is discrete in this sense, then its [[diagonal map]] $\Delta: X \to X \times X$ is [[open map|open]]. The converse also holds: if the diagonal $\Delta(X)$ is open, then so is $i_x^{-1}(\Delta(X)) = \{x\}$ for any $x \in X$, where $i_x(y) \coloneqq (x, y)$. This same space serves as a discrete object in many subcategories and supercategories of $Top$, from [[convergence space]]s (where the only proper filter that converges to a point is the free ultrafilter at that point) to (say) paracompact Hausdorff spaces or [[Diff|manifolds]] (because a discrete topological space has those properties). It is also [[sober space|sober]] and thus serves as a discrete [[locale]], whose corresponding [[frame]] is the [[power set]] of $X$; see [[CABA]]. (Note that [[Loc]] is not concrete over [[Set]].). A locale is discrete if and only if $X \to X \times X$ is open and $X \to 1$ is also open. A locale that satisfies the latter condition is called [[overt locale|overt]]; note that every locale is $T_0$ while every topological space is overt. Moreover, in [[classical mathematics]], every locale is overt, but the notion is important when internalizing in [[toposes]]. A discrete [[uniform space]] $X$ has all [[reflexive relations]] as [[entourages]], or equivalently all [[covers]] as [[uniform cover]]s. It is the only uniformity (on a given set) whose underlying topology is discrete. Strictly speaking, there is no discrete [[metric space]] on any set with more than one element, because the forgetful functor has no left adjoint. However, there is a discrete \emph{extended} metric space, given by $d(x,y) = \infty$ whenever $x \ne y$. More usually, the term `discrete metric' is used when $d(x,y) = 1$ for $x \ne y$, which is discrete in the category of metric spaces of diameter at most $1$. (Comparing the [[adjoint functor theorem]], the problem with $Met$ is that it generally lacks infinitary [[product]]s; in contrast, $Ext Met$ and $Met_1$ are [[complete category|complete]].) In [[Abstract Stone Duality]], a space is called \textbf{discrete} if the diagonal map $\delta: X \to X \times X$ is open, which corresponds to the existence of an [[equality]] relation on $X$; discrete spaces as described above correspond to discrete \emph{overt} spaces in ASD. \hypertarget{local_toposes}{}\subsubsection*{{Local toposes}}\label{local_toposes} Any [[local topos]] has discrete and [[codiscrete object|codiscrete]] objects. By definition, a local topos $\mathbf{H}$ comes with an [[adjoint triple]] of [[functors]] \begin{displaymath} \mathbf{H} \stackrel{\overset{Disc}{\hookleftarrow}}{\stackrel{\overset{\Gamma}{\to}}{\underset{coDisc}{\hookleftarrow}}} \mathbf{B} \end{displaymath} to a [[base topos]] $\mathbf{B}$ (for instance [[Set]]), for which both $Disc$ and $Codisc$ are fully faithful. Thus, a \emph{discrete object} is one in the [[essential image]] of the functor $Disc$. Note that $\Gamma$ is not generally faithful in this case. Even more generally, $\mathbf{H}$ may be a [[local (∞,1)-topos]]. For more on the discrete objects in such a context see \emph{[[discrete ∞-groupoid]]} . Equivalently, this [[adjoint triple]] induces an [[adjoint pair]] of [[modalities]] \begin{displaymath} (\flat \dashv \sharp) \coloneqq ( Disc \Gamma \dashv coDisc \Gamma) \,, \end{displaymath} the \emph{[[flat modality]]} and the \emph{[[sharp modality]]}. The discrete objects are precisely the [[modal types]] for the [[flat modality]]. The [[codiscrete objects]] are the modal types for the [[sharp modality]]. \hypertarget{Fibrations}{}\subsubsection*{{Topological categories, fibrations, and final lifts}}\label{Fibrations} Every [[topological concrete category]] has discrete (and also codiscrete) spaces More generally, if $U$ is an [[opfibration]] and $Sp$ has an initial object preserved by $U$, then $Sp$ has discrete objects: the discrete object on $X$ can be obtained as $i_!(0)$ where $0$ is the initial object of $Sp$ and $i\colon \emptyset \to X$ is the unique map from the initial object in $Set$ (or whatever underlying category). (Conversely, if $Sp$ has discrete objects and pushouts preserved by $U$, then $U$ is an opfibration.) Discrete objects can also be characterized as [[final lifts]] for empty [[sinks]]. \hypertarget{in_simplicial_sets}{}\subsubsection*{{In simplicial sets}}\label{in_simplicial_sets} The category [[sSet]] of [[simplicial sets]] is a [[local topos]] (in fact a [[cohesive topos]]). \begin{itemize}% \item A \emph{discrete object} in $sSet$ is precisely the [[nerve]] of a [[discrete groupoid]]. \item A \emph{[[codiscrete object]]} in $sSet$ is precisely the [[nerve]] of a [[codiscrete groupoid]]. \end{itemize} \hypertarget{discrete_cellularcategorical_structures}{}\subsubsection*{{Discrete cellular/categorical structures}}\label{discrete_cellularcategorical_structures} Often one calls a cellular structure, such as those appearing in [[higher category theory]], \emph{discrete} if it is in the [[essential image]] of the inclusion of [[Set]]. For instance, one may speak of a \emph{[[discrete category]]} as a category that is equivalent (or, in some cases, isomorphic) to one which has only [[identity]] morphisms. This concept has a generalization to a notion of [[discrete object in a 2-category]]. An alternative terminology for this use of ``discrete'' is \emph{[[truncated object|0-truncated]]}, or more precisely (0,0)-truncated. A discrete groupoid in this sense is a \emph{[[homotopy n-type|homotopy 0-type]]}, or simply a [[h-level|0-type]]. This terminology may be preferable to ``discrete'' in this context, notably when one is dealing with higher categorical structures that are in addition equipped with geometric structure. For instance, when dealing with a [[topological category]] there is otherwise ambiguity in what it means to say that it is ``discrete'': it could either mean that its underlying topological spaces (of objects and of morphisms) are discrete spaces, or it could mean that it has no nontrivial morphisms, but possibly a non-discrete topological space of objects. \begin{remark} \label{}\hypertarget{}{} In some cases, the cellular notion of ``discreteness'' for higher categories can be seen as a special case of the \emph{spatial} notion of discreteness --- often the 1-category of shapes will have a functor to sets for which the cellularly discrete objects are the discrete objects in the sense considered on this page. For instance, this is the case for [[simplicial sets]], which form a [[local topos]] over [[Set]]. The discrete objects relative to this notion of cohesion are precisely the simplicial sets that are constant on a given ordinary set, hence those that are ``discrete'' in the cellular sense. \end{remark} \hypertarget{ExamplesInInfinityToposes}{}\subsubsection*{{In $\infty$-toposes}}\label{ExamplesInInfinityToposes} The definition of discrete objects has the evident generalization from [[category theory]] to [[(∞,1)-category theory]]/[[homotopy theory]]. One noteworthy aspect of discrete objects in the context of homotopy theory is that there they are intimately related to the notion of \emph{[[cohomology]]}. For $\mathcal{X}$ an [[(∞,1)-sheaf (∞,1)-topos]] with [[global section]] [[geometric morphism]] \begin{displaymath} (\Delta \dashv \Gamma) \colon \mathcal{X} \stackrel{\overset{\Delta}{\leftarrow}}{\underset{\Gamma}{\to}} \infty Grpd \end{displaymath} then for $X \in \mathcal{X}$ any object and $A \in$ [[∞Grpd]] any object, one says that \begin{displaymath} H(X,A) \coloneqq \pi_0 \mathcal{X}(X,\Delta(A)) \in Set \end{displaymath} is the [[cohomology]] of $X$ [[cohomology with constant coefficients|with (locally) constant coefficients]] in $A$. (Here on the right $\mathcal{X}(-,-)$ denotes the [[(∞,1)-categorical hom-space]].) Now if $\mathcal{X}$ \emph{has discrete objects} in the sense that $\Delta \colon \infty Grpd \to \mathcal{X}$ is a [[full and faithful (∞,1)-functor]], then it follows immediately from the definitions that the cohomology of discrete objects with constant coefficients in $\mathcal{X}$ equals the cohomology in [[∞Grpd]], which is standard ``[[nonabelian cohomology]]'': \begin{displaymath} (\mathcal{X} \, has\, discrete\, objects) \Leftrightarrow ( \forall_{S,A \in \infty Grpd} \mathcal{X}(\Delta S, \Delta A) \simeq \infty Grpd(S,A) ) \,. \end{displaymath} Conversely: \emph{the failure of the cohomology with constant coefficients of objects in the image of $\Delta$ to coincide with standard cohomology is a measure for $\Delta$ not respecting discrete objects.} For example the [[natural numbers object]] $\mathbf{N} \simeq \Delta \mathbb{N}$ in the [[(∞,1)-sheaf (∞,1)-topos]] over some [[topological spaces]] fails to be a discrete object. Accordingly in this case the natural numbers object can have nontrivial higher cohomology with constant coefficients, see for instance (\hyperlink{Blass83}{Blass 83}, \hyperlink{Shulman13}{Shulman 13}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item \textbf{discrete space} \item [[discrete group]] \item [[discrete groupoid]] \item [[discrete ∞-groupoid]] \item [[codiscrete space]], [[Freyd cover]] \item [[adjoint cylinder]] \item [[category of being]] \end{itemize} [[!include cohesion - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item \emph{Discreteness, concreteness, fibrations, and scones}: \href{http://golem.ph.utexas.edu/category/2011/11/discreteness_concreteness_fibr.html}{blog post} \item [[Andreas Blass]], \emph{Cohomology detects failures of the axiom of choice}, Trans. Amer. Math. Soc. 279 (1983), 257-269 (\href{http://www.ams.org/journals/tran/1983-279-01/S0002-9947-1983-0704615-7/}{web}) \end{itemize} \begin{itemize}% \item [[Mike Shulman]], \emph{Cohomology} on the [[homotopy type theory]] blog \href{http://homotopytypetheory.org/2013/07/24/cohomology/}{here} \end{itemize} [[!redirects discrete space]] [[!redirects discrete spaces]] [[!redirects discrete uniformity]] [[!redirects discrete uniformities]] [[!redirects discrete uniform structure]] [[!redirects discrete uniform structures]] [[!redirects discrete uniform space]] [[!redirects discrete uniform spaces]] [[!redirects discrete metric]] [[!redirects discrete metrics]] [[!redirects discrete metric space]] [[!redirects discrete metric spaces]] [[!redirects discrete extended metric]] [[!redirects discrete extended metrics]] [[!redirects discrete extended metric space]] [[!redirects discrete extended metric spaces]] [[!redirects discrete locale]] [[!redirects discrete locales]] [[!redirects discrete object]] [[!redirects discrete objects]] [[!redirects discrete]] [[!redirects discreteness]] [[!redirects discrete type]] [[!redirects discrete types]] \end{document}